Answers must be given in a pdf file (coming from LaTeX, Word, OpenOffice or similar. In that file you must include everything you consider relevant: **explanations, comments, clarifications,** R instructions, graphics, parts of the outputs provided R, etc. In particular you should include in the response file, as an Appendix, the R code that you use to solve problems.

After finishing the exam, upload your file at ATENEA.

A scientific is interested in estimating the value of a parameter μ . She develops an experiment that provides random results distributed as $N(\mu, \sigma^2)$ and then she repeats the experiment n times independently. Let X_1, \ldots, X_n be the results of the experiments.

Unfortunately, the measurement device used by the scientific has not enough precision to capture the exact values of X_i when they are close to 0. Instead of recording X_i , the device provides

$$Y_i = \begin{cases} 0 & \text{if } -1 \le X_i \le 1, \\ X_i & \text{if } |X_i| > 1. \end{cases}$$

The scientific wants to estimate the bidimensional parameter $\theta = (\mu, \sigma)$ using the EM algorithm. She works with X_1, \ldots, X_n as the *complete data* and with Y_1, \ldots, Y_n as the *observed data*. Let y_1, \ldots, y_n be the data she finally obtains from the experimentation.

It can be useful to use this notation:

- $\phi(z)$ and $\Phi(z)$, the density function and the distribution functions of a N(0,1), respectively.
- $\frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right)$, the density function of a $N(\mu, \sigma^2)$.
- $\Phi\left(\frac{x-\mu}{\sigma}\right)$, the distribution function of a $N(\mu, \sigma^2)$.

Answer the following questions.

- 1. What is the contribution to the likelihood function of the *i*-th experiment result when the observation y_i is equal to 0? And what is this contribution when $|y_i| > 1$?
- 2. Write down the log-likelihood function for the complete data, and the log-likelihood for the observed data.
- 3. E step in the EM algorithm. Give the expression of $Q(\mu, \sigma | \mu_m, \sigma_m)$.

Indication: Truncated normal distribution. Given a r.v. X with density function f(x) and distribution function F(x), the density function of X conditional to a < X < b is

$$f_{X|a < X < b}(x) = \begin{cases} \frac{f(x)}{F(b) - F(a)} & \text{if } a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$$

If $X \sim N(\mu, \sigma^2)$, the distribution of X conditional to a < X < b is called truncated normal distribution in the interval [a, b] In this case, it can be proved that

$$E_{\mu,\sigma}(X \mid a < X < b) = \mu + \frac{\phi(\frac{a-\mu}{\sigma}) - \phi(\frac{b-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})}\sigma,$$

$$\operatorname{Var}_{\mu,\sigma}(X \mid a < X < b) = \sigma^{2} \left[1 + \frac{\frac{a-\mu}{\sigma}\phi(\frac{a-\mu}{\sigma}) - \frac{b-\mu}{\sigma}\phi(\frac{b-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})} - \left(\frac{\phi(\frac{a-\mu}{\sigma}) - \phi(\frac{b-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})} \right)^{2} \right].$$

Moreover, for any $\tau \in \mathbb{R}$,

$$E_{\mu,\sigma}((X - \tau)^2 \mid a < X < b) = Var_{\mu,\sigma}(X \mid a < X < b) + (E_{\mu,\sigma}(X \mid a < X < b) - \tau)^2.$$

4. **M step in the EM algorithm.** Prove that maximizing $Q(\mu, \sigma | \mu_m, \sigma_m)$ in (μ, σ) is equivalent to maximizing the complete log-likelihood calculated from a sample $\tilde{y}_1, \ldots, \tilde{y}_n$ with

$$\tilde{y}_i = \begin{cases} y_i & \text{if } |y_i| > 1\\ E_{\mu_m, \sigma_m}(X \mid -1 < X < 1) & \text{otherwise.} \end{cases}$$

Deduce that

$$\mu_{m+1} = \frac{1}{n} \sum_{i=1}^{n} \tilde{y}_i, \ \sigma_{m+1}^2 = \frac{1}{n} \sum_{i=1}^{n} (\tilde{y}_i - \mu_{m+1})^2.$$

- 5. Write an R code implementing this EM algorithm.
- 6. File results.txt contains the data obtained by the scientific. Read them by

Use your EM algorithm for estimating (μ, σ) by maximum likelihood.