First Rate Scientist or Second Rate Mathematician

30 August 2023

Outline

- NASA Carbon Overwrapped Pressure Vessel (COPV) Study
 - Background
 - Experimental Designs
 - Analyses
 - Incorporating the Physics
- Jet Turbine Data

NASA Strand and Vessel Testing

- NASA's Engineering Safety Center (NESC) project to assess safety of Composite Overwrapped Pressure Vessels (COPVs)
- COPVs
 - Transport gasses under high pressure
 - Metal Liner
 - Wrapped by a Series of Carbon Strands
- Research Question: Determine Reliability of COPVs at Use Conditions for the Expected Mission Life
 - Primary Focus on Strands
 - Secondary Focus on Relationship to Vessels
 - Strands Less Expensive to Test
- <u>https://www.nasa.gov/offices/nesc/home/Feature_COPVs_Jan-2012.html</u>

NASA Strand and Vessel Testing

• Analyses Use Classic Weibull Model

$$\mathbf{R}(t_i) = e^{-\left(\frac{t_i}{t_{ref}}SR^{\rho}\right)^{\beta}}$$

- Observed Life Time: t_i
- SR: Stress Ratio, ratio of stress level to strength scale parameter
- Critical Parameters:
 - ρ : Sensitivity to Stress Ratio
 - β : Shape parameter for time to Failure
 - t_{ref} : Reference time to Failure when SR=1

NASA Strand Study

- Previous Strand Test
 - Relevant strand study conducted at a national lab
 - 57 strands at high loads for 10 years
 - Net information learned:
 - Strands either fail very early or
 - Last more than 10 years
 - Limited information based on 10 years of study!
- Estimates of Critical Parameters for Planning

NASA Strand Study

- Team's Initial Concept
 - Much larger study that the original 10 year study
 - Censor very early
 - Reduces time
 - Allows for the larger study in a practical amount of time
- Proceed in phases
- Have detailed data records to track any problems

NASA Strand Study

Experimental Phases

- Phase A During "shake-out" of tests rigs
- Phase B "Gold Standard" Experiment for Strands
- Phase C "Proof" Study
- In Parallel: Vessel Studies (Opportunistic)

- Conducted During Shake-Out of Equipment
 - Small study (although bigger than the national lab study!)
 - Statistical goal: Determine if the parameters from the national lab study are valid as the basis for planning the larger study!
 - Note: Phase A gave the team an opportunity to re-plan the larger experiment, if necessary!

Phase B

- "Gold Standard" Experiment
 - Planned time required: 1 year
 - Used 4 "blocks" of almost equal numbers of strands
 - Allowed the team to correct for time effects
 - Allowed the team to mitigate problems, especially early
 - Study assumed the "classic" Weibull model
 - Size of the experiment assured ability to assess model

Block	SR	Number	Proportion
1	0.80	176	0.718
	0.85	50	0.204
	0.90	19	0.078
	Sum	245	1.00
	0.80	170	0.708
2	0.85	50	0.208
	0.90	20	0.083
	Sum	240	1.00
	0.80	174	0.710
3	0.85	51	0.208
	0.90	20	0.082
	Sum	245	1.00
	0.80	176	0.718
4	0.85	49	0.200
	0.90	20	0.082
	Sum	245	1.00

Observations

- Phase A: Surprisingly Similar to Initial Study
- Phase B:
 - Serious problem occurred with the gripping in the first block
 - Serious conversations with possibility of replacing!
 - Other three blocks well behaved and by themselves produced better than the planned precision for the estimates
- Final Decision: Drop the First Block

NASA Strand Study: Benefits

• Phase A:

- Opportunity to Confirm Initial Study Parameter Estimates
- Allowed opportunity to revise the experimental protocol if the estimates were significantly different
- Phase B:
 - Allowed opportunity to model changes in time over the year.
 - Mitigated the problem with the first block!
 - Provided simple mechanism for replacing the first block if needed!

Description of Stress Rupture Test

- Stress Rupture
 - Failures occur after a period of time where there is no increase in load
- Failures are needed to determine reliability
- Must extrapolate from where test is performed versus where reliability predictions are made
- Test strands at higher loads and then extrapolate
- Need a model to make predictions

Classic Stress Rupture Model: Weibull

• Classic Weibull Survival Function

$$S(t_i) = P(T > t_i) = e^{-\left(\frac{t_i}{t_{ref}}SR^{\rho}\right)^{\beta}} \quad \text{Note: } \eta = t_{ref}SR^{-\rho}$$

0

- Observed Life Time: t_i
- SR: Stress Ratio, ratio of stress level to strength scale parameter
- Critical Parameters:
 - ρ : controls the relationship between the failure time and stress ratio (SR)
 - β : Shape parameter for time to Failure
 - t_{ref} : Reference time to Failure

Classic Stress Rupture Model: SEV

• Re-expressed Survival Function $S(t_i) = e^{-\left(\frac{t_i}{t_{ref}}SR^{\rho}\right)^{\beta}} = e^{-e^{\beta\left(\log t_i - \theta + \rho \ln(SR)\right)}}$ where $\theta = \log(t_{ref})$ and $\mu = \log(\eta) = \theta - \rho \ln(SR)$

Now working with a linear model, similar to simple linear regression

- Scaled Residuals
 - $z_i = \beta e_i = \beta (\log t_i \mu) = \beta (\log t_i \theta + \rho \ln(SR))$
 - Used for predictions of the log probability for specific observations

True Structure of the Stress Rupture Model

 $\mu = \log(\eta) = \theta - \rho \ln(SR)$

- ρ: controls the relationship between the failure time and stress ratio (SR)
- β: Shape parameter for time to Failure
- *t_{ref}*: Reference time to Failure

Log Stress Ratio versus Log Time

Stress Rupture model explains the behavior of the items *on hold*.

• Weibull regression gives us estimates for ρ , β and t_{ref}

"Full Model"

- Separate individual models to each stress ratio
 - Two parameters for the SR=1 data: $\eta_{.80}$ and $\alpha_{.80}$
 - Two parameters for the SR=2 data: $\eta_{.85}$ and $\alpha_{.85}$
 - Two parameters for the SR=3 data: $\eta_{.90}$ and $\alpha_{.90}$
- Largest possible Weibull model for the data
 - Has the largest log-likelihood
- Will compare to the Full Model to subset models to determine whether the improvement in log-likelihood justifies the extra parameters

Stress Ratio versus Time on Hold

Proper Analysis:

- Model the data that have achieved the target load as defined by the experimental protocol (no ramp data)
- Defines that the time at the sustained constant load begins the moment the test item achieves the target load
- Assumes a Weibull distribution to describe the time to failure under the sustained constant load
- Experimental protocol uses right-censoring at a nominal time

Proper Analysis of Full Model

- Ramp and Hold data are modeled separately
 - Three parameters to explain the hold data: ρ , β , and $\theta = \log t_{ref}$
- Model assumes

$$\alpha_{.80} = \alpha_{.85} = \alpha_{.90} = \beta$$

Comparisons

Model:	Fit-to-Hold	Full Model
Number of Observations:	708	708
True Log-Likelihood:	-306.411	-305.900
Log-Likelihood Statistic:	612.822	611.800
AIC:	618.822	623.800

- The p-value associated with the χ^2 based on the difference in the log-likelihood statistics is 0.7959
 - The three extra parameters in the full model are not significant
- Smallest AIC value for Fit-to-Hold (adjustment for parameters)

Adaptations to Include Ramp Failures

• Rigorous Approach

- Add two additional parameters for a Weibull Distribution fit to only the ramp data along with the Fit-to-Hold Analysis
 - Two parameters for the ramp data: η and α
 - Three parameters to explain the hold data: ρ , β , and $\theta = \log t_{ref}$
- Left Censored Analysis
 - Assume that ALL data follow the same failure mechanism
 - Left censor all ramp failures and some early stress rupture failures
 - Three parameters to explain the ramp and hold data: ρ , β , and $\theta = \log t_{ref}$

Stress Ratio versus Time on Hold

Comparisons

	Rigorous	Left-Censored	Full Model
Overall log £:	-251.103	-390.779	-250.592
Log-Like Stat:	502.206	781.558	501.184
AIC:	512.206	789.558	517.184
Ramp log £:	55.308		55.308
Hold log £:	306.4114		305.900

- All fit statistics indicate that the rigorous model is the superior fit to the data compared to the Left-Censored approach
 - Smallest AIC value (512.206) and log-likelihood statistic (502.206) and the largest overall loglikelihood value (-251.103)The three extra parameters in the full model are not significant
- The probability that the left censored analysis explains the data at least as well as the rigorous model is 1.03946 E-62
- Counter-intuitive to penalize the maximum likelihood fit to the data with left censoring especially when we know the precise time these items failed on the ramp

Physics "Infused" Approach

- Approaches presented to this point: All empirical!
- Stress-Strain controls tensile strength and stress rupture.
 - Ramp: Rapid Pull
 - Stress Rupture: Redistribution of Load as Fibers Fail (Slow)
- Physics: Failure when strain exceeds threshold.
- Task: Can we illustrate with our experimental results.

Structure of the Data

Proper Model Structure for the Phase B Data

log Total Time on Test

Key Points

- Failure on Hold Requires Test Item to Survive Ramp
- Estimate Effective/Equivalent Load by Probability Item Fails on Hold
 - $S_R(SR_t)$: Survivor Probability that Item Achieves Target Stress Ratio
 - $S_h(t)$: Survivor Probability for Item Fails on Hold
 - $P(t \le t_h)$ Probability Item Fails at Time t_h

$$P(t \le t_h) = S_R(SR_t) + S_R(SR_t) * [1 - S_h(t)]$$

$$= 1 - S_R(SR_T) * S_H(t_h)$$

Estimating the Effective Load

• Weibull

$$L_0 = \{-\ln[1 - P(t < t_h)]\}^{1/\alpha}$$

• Log-Normal

$$L_0 = \exp\{\mu + \sigma \cdot F^{-1}[P(t < t_h)]\}$$

- μ : Mean for the Log-Normal Distribution
- σ : Standard Deviation

Curve: Strands

Case Study: Structure of Jet Turbine Engine

Opportunity Presented by Industry 4.0

- For a Given Critical Quality Characteristic, y:
 - Very Serious Economic Consequences If Not under "Control"
 - Large Amount of High Quality Data over Time
 - Typical Behavior over Time Is Non-Linear
- Frequently, Large Number of Ancillary Variables, x_1, x_2, \cdots, x_m
 - Highly Correlated with *y*
 - Also, Large Amount of High Quality Data
 - Proper Modeling Defines the Effect of the *x*'s on *y*
 - These Effects Are the Observed Manifestations of the System of Causes
- Challenge: Building Proper Set of Models

Understanding the Science: Thermodynamics

• Underlying Thermodynamics:

$$T = T_{20}^{\theta_1} \left(\frac{P_{30}}{P_{20}}\right)^{\theta_2}$$
$$\log T = \theta_1 \log T_{20} + \theta_2 \log \left(\frac{P_{30}}{P_{20}}\right)$$
$$\widehat{T} = \exp \left[\widehat{\theta}_1 \log T_{20} + \theta_2 \log \left(\frac{P_{30}}{P_{20}}\right)\right]$$

• Define the "Thermo Residual":

$$e_{th} = T - \hat{T}$$

Monitoring Procedure: First Step

- Critical Quality Characteristic: *TGT*.
- Obtain a Training Data Set.
- Estimate θ_T and ω_T Using the Model $\log TGT = \theta_T \log T_{atm} + \omega_t \log \left(\frac{P_{30}}{P_{20}}\right) + \epsilon$
- Resulting Residuals Explain the First Variance Component.
- Variance of These Residuals Reflect Basic Thermodynamics

- Thermo Residuals Use Only:
 - T_{atm}
 - Pressure Ratio: P_{30}/P_{20}
- There > 40 Other Candidate Variables to Explain the Behavior!
- Critical Issues for Selecting Models:
 - Centered, Scaled Variables!
 - Good Model Selection Approaches
- Primary Variables: Second Variance Component across Engines
- Identified Best Model: 15 Predictors

Monitoring Procedure: First Step

Notice Change in Scale!

Time Series Plot of thermo_resid Time Series Plot of pred_prime_EHM pred_prime_EHM thermo_resid -20 -10 -25 -30 Index Index

Notice Similarity in Patterns!

Basic Linear Models Theory:

Proper Residuals for Checking Assumptions Are Externally Studentized Residuals.

Common Diagnostic: Time Plot of Residuals.

No Brainer: Add Limits

Bonferroni: No Observation Is Significant!