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Several important models in mathematical physics concern “interfaces”, 
that is, surfaces separating two “competing states” 
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called phase transitions, minimal 
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The interfaces are often found as level sets of solutions to certain 
nonlinear PDE

§ Typically solutions to the PDE can be found minimizing some energy functional or 
Lagrangian
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certain nonlinear PDE
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The interfaces are often found as level sets of solutions to certain 
nonlinear PDE

§ Typically solutions to the PDE can be found minimizing some energy functional or 
Lagrangian

J(u) :=

Z

Rn

�
|ru|2 +max(u, 0)

�
dx

Example 1.  Stefan problem (ice-water interface)

{x 2 Rn : u(x) > 0}

{x 2 Rn : u(x) = 0} ICE

WATER

§ Interfaces are often found as a level set of a function                         that solves a 
certain nonlinear PDE

u : Rn ! R

Energy functional  



The interfaces are often found as level sets of a certain scalar functions 
that minimize some energy functional or Lagrangian

J(u) :=

Z

Rn

(|ru|2 + �{u>0})dx

{x 2 Rn : u(x) > 0} INSULATOR

{x 2 Rn : u(x) = 0} CONDUCTOR 

§ Typically solutions to the PDE can be found minimizing some energy functional or 
Lagrangian

§ Interfaces are often found as a level set of a function                         that solves a 
certain nonlinear PDE

u : Rn ! R

Example 2:  Bernoulli problem (optimal design of insulator)

Energy functional  



In the same way that real functions may have absolute minima, local 
minima, and critical points, the same happens for energy functionals

Minimizers

Energy

u : Rn ! R is called…

J(u+ t') � J(u) 8' 2 C1
c (Rn)§ Minimizer if 8t 2 R
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In the same way that real functions may have absolute minima, local 
minima, and critical points, the same happens for energy functionals

Minimizers

Stable   
critical points

Critical points

Energy

u : Rn ! R is called…

J(u+ t') � J(u) 8' 2 C1
c (Rn)§ Minimizer if 

§ Critical point  if J(u+ t') = J(u) + o(t) t # 0as

8t 2 R

§ Stable critical point   if t # 0asJ(u+ t') � J(u) + o(t2)



The three notions coincide if the functional is convex

Convex energy

u : Rn ! R is called…

J(u+ t') � J(u) 8' 2 C1
c (Rn) 8t > 0§ Minimizer if 

§ Critical point  if J(u+ t') = J(u) + o(t) t # 0as

THE THREE 
NOTIONS 
COINCIDE !

§ Stable critical point   if t # 0asJ(u+ t') � J(u) + o(t2)
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x1, x2, v(x1, x2)
�
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The piece of graphical surface

is a critical point of the area functional F (v) :=

Z

⌦

p
1 + |rv|2

if t 7! F (v + t') has a critical point (zero derivative) at   t = 08' 2 C1
c (Rn)

A classical example in the Calculus of Variations: minimal graphs

Given a convex and bounded domain  ⌦ ⇢ R2 v : ⌦ ! Rand a smooth function
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The piece of graphical surface

is a critical point of the area functional F (v) :=

Z

⌦

p
1 + |rv|2

if t 7! F (v + t') has a critical point (zero derivative) at   t = 0

That is

8' 2 C1
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⌦
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A classical example in the Calculus of Variations: minimal graphs
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1 + |rv|2
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Given a convex and bounded domain  ⌦ ⇢ R2 v : ⌦ ! Rand a smooth function



A classical example in the Calculus of Variations: minimal graphs
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A classical example in the Calculus of Variations: minimal graphs

Integrating by parts we find

0 =

Z

⌦

rv ·r'p
1 + |rv|2

= �
Z

⌦
div

✓
rvp

1 + |rv|2

◆
' 8' 2 C1

c (Rn)

This leads to the minimal graph equation (Lagrange, 1760)

div

✓
rvp

1 + |rv|2

◆
= 0

Important remark: Since the area functional is convex for graphs every critical point as 
above is a minimizer. However, this is not true for non-graphical minimal surfaces!



Stable critical points (not only minimizers) can be observed in nature, 
so we would like to understand their structure

Example. Soap film with the shape of a catenoid

SOURCE:  M. Ito  and T. Sato in European Journal of Physics 2010

Some stable minimal surfaces (non-graphical) are not area minimizers, as we can see for 
instance by inspecting catenoids



Stable critical points (not only minimizers) can be observed in nature, 
so we would like to understand their structure

Example. Soap film with the shape of a catenoid

SOURCE:  M. Ito  and T. Sato in European Journal of Physics 2010

Some stable minimal surfaces (non-graphical) are not area minimizers, as we can see for 
instance by inspecting catenoids

Stable configurations (i.e. essentially local minima) are the ones observable in nature, since
noise makes unstable configurations decay towards stable ones 
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Often interfaces in phase transitions are not described by a “black-or-white” model …
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The so-called phase field models describe interfaces as zero level sets of 
critical points of certain functionals depending on a small parameter



The so-called phase field models describe interfaces as zero level sets of 
critical points of certain functionals depending on a small parameter

Often interfaces in phase transitions are not described by a “black-or-white” model …

x

Cross 
section line

+0.99
-0.99

state 2

state 1
-0.99

+0.99

0
x

u✏ ✏

… but as the 0-level set of  solutions to some variational nonlinear PDE with a small parameter

u✏ : Rn ! (�1, 1) parameter✏ > 0

state 1 state 2

These solutions (or critical points) make a steep transition between -1 and +1



Allen-Chan and Peierls-Nabarro are two similar phase-field models for 
phase transitions

Fluid-fluid interface / metal alloys / …

u : Rn ! (�1, 1)

ALLEN-CAHN (1950’s)

I✏(u) := [u]2H1(Rn) + ✏

�2

Z

Rn

W (u)dx

[u]2H1(Rn) =

Z

Rn

|ru|2 =

Z

Rn

|⇠|2|û(⇠)|2d⇠



where in both models  

Crystal dislocations / phase transition with line tension effect / …

Fluid-fluid interface / metal alloys / …

u : Rn ! (�1, 1)

ALLEN-CAHN (1950’s)

PEIERLS-NABARRO (1940’s)

W (u) := (1� u2)2 is a so-called double-well potential 

u : Rn ! (�1, 1)

I✏(u) := [u]2H1(Rn) + ✏

�2

Z

Rn

W (u)dx

J✏(u) := [u]2H1/2(Rn) + ✏

�1

Z

Rn

W (u)dx

[u]2H1(Rn) =

Z

Rn

|ru|2 =

Z

Rn

|⇠|2|û(⇠)|2d⇠

[u]2H1/2(Rn) =

ZZ

Rn⇥Rn

�
u(x)� u(y)

�2

|x� y|n+1
dxdy =

Z

Rn

|⇠||û(⇠)|2d⇠

Allen-Chan and Peierls-Nabarro are two similar phase-field models for 
phase transitions



Double-well potential

The potential forces minimizers of AC and PN to take values close to +1 
and -1 everywhere, except on some “fat surfaces” of transition

+1�1

W (u)

x

§ The potential term (multiplied by a huge constant) forces minimizers take values very 
close to  +1 or -1 at most points, except near “fat surfaces” of thickness epsilon 
where transitions occur

J✏(u) := [u]2H1/2(Rn) + ✏

�1

Z

Rn

W (u)dx

I✏(u) := [u]2H1(Rn) + ✏

�2

Z

Rn

W (u)dx



Double-well potential

+1�1

W (u)

x

§ The potential term (multiplied by a huge constant) forces minimizers take values very 
close to  +1 or -1 at most points, except near “fat surfaces” of thickness epsilon 
where transitions occur

§ In 1 dimension the Euler Lagrange equation                                      has a solution as 
follows  

-0.99

+0.99

0
x

✏

J✏(u) := [u]2H1/2(Rn) + ✏

�1

Z

Rn

W (u)dx

�✏

��00 =
1

✏2
(�� �3)

I✏(u) := [u]2H1(Rn) + ✏

�2

Z

Rn

W (u)dx

The potential forces minimizers of AC and PN to take values close to +1 
and -1 everywhere, except on some “fat surfaces” of transition



The “Dirichlet” term of the functionals penalizes oscillations, penalizing 
transitions proportionally to their  "area”

�d�

d� > 0

d� < 0

✏ I✏(U�,✏) = Area(�) +O(✏)

U�,✏ := �✏ � d�

1

| log ✏| J✏(U�,✏) = Area(�) +O

✓
✏2

| log ✏|

◆

I✏(u) := [u]2H1(Rn) + ✏

�2

Z

Rn

W (u)dx J✏(u) := [u]2H1/2(Rn) + ✏

�1

Z

Rn

W (u)dx

Insightful computation

� Piece of smooth surface

Signed distance to �

Define the Ansatz

We have



Theorem (Modica, Mortola 1977; Alberti, Bouchitte, Seppecher 1998)

u✏k I✏k J✏kminimizers of either or

✏k # 0

u✏k

L1

loc�! �E � �Rn\E

with
E ⇢ Rn is a minimizer of perimeter

For infinitesimal epsilon phase transitions become minimal surfaces

is a minimal surface@E



Theorem (Modica, Mortola 1977; Alberti, Bouchitte, Seppecher 1998)

u✏k I✏k J✏kminimizers of either or

✏k # 0

u✏k

L1

loc�! �E � �Rn\E

with
E ⇢ Rn is a minimizer of perimeter

For infinitesimal epsilon phase transitions become minimal surfaces

is a minimal surface@E

u✏ ⇠ +1

u✏ ⇠ �1

E

Ec

+0.9
-0.9 0

+1

�1

✏ # 0ALLEN-CAHN
PEIERLS-NABARRO

MINIMAL SURFACES



Thanks to this connection, ideas from minimal surfaces theory can be 
used for the analysis phase transitions and vice versa

§ The theory of minimal surfaces is more classical and was developed before, so it
strongly influenced the theory of phase transitions

§ However, the flow of ideas is nowadays bidirectional*, as it is sometimes
convenient to study questions in minimal surfaces by using methods from phase
transitions



Thanks to this connection, ideas from minimal surfaces theory can be 
used for the analysis phase transitions and vice versa

§ The theory of minimal surfaces is more classical and was developed before, so it
strongly influenced the theory of phase transitions

§ However, the flow of ideas is nowadays bidirectional*, as it is sometimes
convenient to study questions in minimal surfaces by using methods from phase
transitions

O. Chodosh, C. Mantoulidis, Minimal surfaces and the Allen–Cahn
equation on 3-manifolds: index, multiplicity, and curvature estimates,
Ann Math., to apper

A good example is found in the paper*

where the authors construct minimal surfaces in 3-dimensional
manifolds —in relation to Yau’s conjecture— via approximations by
min-max solutions of Allen-Cahn
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BERNSTEIN PROBLEM (1914)

Bernstein’s problem in minimal surfaces …

Must any entire minimal graph1 in        be a hyperplane?  Rn
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BERNSTEIN PROBLEM (1914)

Bernstein’s problem in minimal surfaces …

Must any entire minimal graph1 in        be a hyperplane?  Rn

1  Solution to the minimal graph eq’n, than is div

 
rgp

1 + |rg|2

!
= 0g : Rn�1 ! R

§ (Counter)example for n ≥ 9

§ Positive results n = 3 
n = 4  

n = 5

n = 6,7,8

Bernstein ~1915 (also Fleming 1962)

De Giorgi 1965

Almgren 1966

Simons 1968

Bombieri, De Giorgi, Giusti 1969



CONJECTURE (DE GIORGI 1978)
u : Rn ! (�1, 1) critical point of Allen-Cahn satisfying                
Then, it must have 1D symmetry (i.e.  its level sets must be hyperplanes) if  n ≤ 8

u ⇠ +1

u ⇠ �10
+0.9

-0.9

xn xn

x

0
x

0

Flatness of minimal graphs … … is analogous to flatness of level sets

… motivates De Giorgi’s conjecture on the Allen-Cahn equation

@
xnu > 0



§ (Counter)example for n ≥ 9

§ Positive results n = 2 
n = 3  
n = 4,5,6,7,8 *

Ghoussoub, Gui (Math. Ann., 1998)
Ambrosio, Cabre (J. Amer. Math. Soc., 2000)
Savin (Ann. Math., 2009)

Del Pino, Kowalczyc, Wei (Ann. Math.,  2011)

CONJECTURE (DE GIORGI 1978)
u : Rn ! (�1, 1) critical point of Allen-Cahn satisfying                
Then, it must have 1D symmetry (i.e.  its level sets must be hyperplanes) if  n ≤ 8

u ⇠ +1

u ⇠ �10
+0.9

-0.9

xn xn

x

0
x

0

*  Under extra assumption that solutions are minimizers

Flatness of minimal graphs … … is analogous to flatness of level sets

… motivates De Giorgi’s conjecture on the Allen-Cahn equation

@
xnu > 0



The so-called stability conjectures are very strong generalizations of 
Bernstein and De Giorgi concerning the structure of "entire” stable non-
graphical objects

STABILITY CONJECTURES

I. Hyperplanes are the only complete, connected, imbedded, stable minimal hypersurfaces in 
ambient dimensions n ≤ 7 

I. Any stable solution of Allen-Cahn [resp. Peierls-Nabarro] must have 1D symmetry for n ≤ 7 

A

B



STABILITY CONJECTURES

I. Hyperplanes are the only complete, connected, imbedded, stable minimal hypersurfaces in 
ambient dimensions n ≤ 7 

Remarks

§ Using Savin’s results, stability conjecture for Allen-Cahn [resp. Peierls-Nabarro] in dimension 
n-1 implies the full De Giorgi conjecture in dimension n (without extra assumption 

§ Conjecture A is only known to be true for n = 3 (Fischer-Colbrie, Scheon / Do Carmo, Peng, 
1970’s)  and is open for other dimensions (for n = 4 it is equivalent to Schoen’s conjecture)

§ Both statements are known to be true if we replace “Stable solutions” by “Energy
minimizers” (Simons 1968, Savin 2009)

I. Any stable solution of Allen-Cahn [resp. Peierls-Nabarro] must have 1D symmetry for n ≤ 7 

A

B

The so-called stability conjectures are very strong generalizations of 
Bernstein and De Giorgi concerning the structure of "entire” stable non-
graphical objects
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Theorem. Assume that                             ,  with                                     ,   is a 
stable critical point of 

Figalli, S - Invent. Math. 2019 

In a recent work with Alessio Figalli we could establish the three 
dimensional case of the stability conjecture for Peierls-Nabarro

u : R3 ! (a, b) �1 < a < b < +1

J(u) := [u]2H1/2(R3) +

Z

R3

F (u)

for some potential.  Then there exists                              and                 such that    � : R ! (a, b) e 2 S2

u(x) = �(e · x)



§ The stability conjecture for Peierls-Nabarro is true for n=3 
§ The analogue of De Giorgi’s conjecture for Peierls-Nabarro is true for n=4

Consequences (both still open for Allen-Cahn):
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dimensional case of the stability conjecture for Peierls-Nabarro

u : R3 ! (a, b) �1 < a < b < +1

J(u) := [u]2H1/2(R3) +

Z

R3

F (u)

for some potential.  Then there exists                              and                 such that    � : R ! (a, b) e 2 S2

u(x) = �(e · x)



COMMENT 1 - This theorem builds on crucial previous results that have 
been developed in the last decades at UPC

§ The paper  Cabre and Sola-Morales – Comm. Pure Appl. Math 2005 was 
pioneer in studying the problem and relating it to the theory for Allen-Cahn. I

§ The same paper by Cabre and Sola-Morales already stablished the stability 
conjecture for Peierls-Nabarro in two dimensions

§ Later, in 2010, Cabre and Cinti established the analogous of  De Giorgi 
conjecture for Peierls-Nabarro in three dimensions



COMMENT 2 - Somewhat surprisingly, our proof applies methods from 
the theory of nonlocal minimal surfaces to our functional, even if our 
interfaces behave like standard (local) minimal surfaces 

§ Note that the 1-parameter family of functionals 

J✏,s(u) := [u]2Hs(Rn) + ✏

�2s

Z

Rn

W (u) dx [u]2Hs(Rn) :=

Z

Rn

|⇠|2s|û(⇠)|2d⇠where

interpolates Peierls-Nabarro and Allen-Cahn:

J 1
2 ,✏

= J✏ J1,✏ = I✏
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generalizations led Caffarelli, Roquejoffre and Savin (in Comm. Pure Appl. Math, 2010) to 
introducing the so-called nonlocal minimal surfaces  

s 2 (0, 1/2)
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interplay of stability and nonlocal interactions, which were fundamental to our proof



COMMENT 2 - Somewhat surprisingly, our proof applies methods from 
the theory of nonlocal minimal surfaces to our functional, even if our 
interfaces behave like standard (local) minimal surfaces 

§ Note that the 1-parameter family of functionals 

J✏,s(u) := [u]2Hs(Rn) + ✏

�2s

Z

Rn

W (u) dx [u]2Hs(Rn) :=

Z

Rn

|⇠|2s|û(⇠)|2d⇠where

interpolates Peierls-Nabarro and Allen-Cahn:

J 1
2 ,✏

= J✏ J1,✏ = I✏

§ But it also make sense to define these functionals for                      , and the study of these 
generalizations led Caffarelli, Roquejoffre and Savin (in Comm. Pure Appl. Math, 2010) to 
introducing the so-called nonlocal minimal surfaces  

s 2 (0, 1/2)

§ The analysis of these new surfaces lead to some interesting discoveries about the 
interplay of stability and nonlocal interactions, which were fundamental to our proof

§ Several important contributions to the theory of Nonlocal Minimal Surfaces and the 
corresponding CMC have been developed at UPC by various researchers (X. Cabre, M. 
Cozzi, G. Csato , A. Mas, J. Sola-Morales) 
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