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GoF tests for regression

Motivation: the χ2 test

Pearson, K. (1900)
On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling.
Philosophical Magazine, Vol. L, 157-175.
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GoF tests for regression

Motivation: the χ2 test

Parametric tests

Let X denote the variable of interest with distribution Fθ, θ ∈ Θ. We may be
interested in testing:

I H0 : θ = θ0, vs. Ha : θ 6= θ0

I H0 : θ ∈ Θ0, vs. Ha : θ ∈ Θ1

I . . .

Nonparametric tests (Specification tests)

NP tests are concerned with structural hypothesis about X, without imposing a
parametric underlying distribution:

I H0 : F = F0, vs. Ha : F 6= F0

I H0 : F ∈ Fθ, vs. Ha : F /∈ Fθ
I . . .
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GoF tests for regression

Motivation: the χ2 test

Goodness–of–fit tests

The term goodness–of–fit (GoF) was introduced by Pearson at the beginning
of the 20th century and refers to statistical tests that check the quality of a
distribution’s fit to a set of data.

Nowadays, GoF is not only used for distribution problems, but in more general
contexts such as regression.
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GoF tests for regression

Motivation: the χ2 test

The χ2 idea (χ2 tests)

The general idea of χ2 test consists of classifying the possible values of the
theoretical distribution in groups/bin/classes and compare, in each of them, the
actual observed number of data points with the expected quantity under the null
hypothesis.

Tn =
∑
k

(Ok − Ek)2

Ek

I Goodness–of–fit, homogeneity, independence.
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Motivation: the χ2 test
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Figura: Histogram and normal density
(f0) for the eruptions time in Faithful
Geyser dataset.

Density based χ2 test

Denote by Ik = [xk, xk+1) and by f̂n,H the his-
togram. For the testing problem H0 : f = f0

vs. Ha : f 6= f0, the χ2 test can be written in
terms of the histogram f̂n,H as follows:

Tn =
∑
k

(Ok − Ek)2

Ek

= n
∑
k

[∫
Ik

(
f̂n,H(x)− f0(x)

)
dx
]2∫

Ik
f0

' n

(∫
f̂2
n,H(x)

f0(x)
dx− 1

)
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GoF tests for regression

Motivation: the χ2 test
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Figura: Histogram, kernel density
estimator and normal density (f0) for
the eruptions time in Faithful Geyser
dataset.

Other density based tests

Distance based tests:

Tn = d
(
f̂ , f0

)
f̂ is a nonparametric estimator of f and d is
a functional distance: d (f, g) =

∫
|f − g| or

d (f, g) =
[∫

(f − g)2]1/2, for instance.

Just in a while...
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GoF tests for regression

Motivation: the χ2 test

Distribution based tests

Testing problem (simple null hypothesis)

Let X denote the random variable of interest, with distribution F .

H0 : F = F0, vs. Ha : F 6= F0

Empirical cumulative distribution function

From a random sample X1, . . . , Xn of X, the empirical cumulative distribution
function (ECDF) is defined as:

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) =


0 if x ∈ (−∞, X(1))
k
n

if x ∈ [X(k), X(k+1))
1 if x ∈ [X(n),∞)
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GoF tests for regression

Motivation: the χ2 test

Distribution based tests

Based on the empirical process...

αn (x) = n1/2 (Fn (x)− F0 (x)) = n−1/2
n∑
i=1

(I (Xi ≤ x)− F0 (x))

I KS test: Tn = supx |αn(x)| = ‖αn(·)‖∞
I CvM test: Tn =

∫
α2
n(x)dF0(x)

Asymptotic behaviour is determined by the continuous functional operating on
a Gaussian limit process α.

Durbin, J. (1973)
Weak convergence of the sample distribution function when parameters
are estimated.
Annals of Statistics, Vol. 1, 279–290.
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GoF tests for regression

Motivation: the χ2 test

Distribution based tests

Distribution based tests (composite H0)

Empirical process with estimated parameters:

αn (x) = n1/2 (Fn (x)− Fθ̂ (x)) ,

leading to a Kolmogorov-Smirnov test:

Tn = sup
x∈R

n1/2 |Fn (x)− Fθ̂ (x)| ,

or to a Cramer-von Mises test:

Tn =

∫ [
n1/2(Fn (x)− Fθ̂ (x))

]2
dFθ̂ (x) .
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GoF tests for regression

Motivation: the χ2 test

Back to density based tests...

The use of kernel density estimator for testing

Nonparametric kernel density estimators can be used as pilot estimations for
parametric models. Let’s start with a simple null hypothesis:

H0 : f = f0, vs. Ha : f 6= f0

Tn =

∫ [√
nh
(
f̂n,K(x)− EH0(f̂n,K(x))

)]2
ω(x)dx

where EH0 denotes the expected value of f̂n,K (a kernel density estimator)
under the null hypothesis and ω is a weight function.

Bickel, P.J, and Rosenblatt, M. (1973)
On some global measures of the deviations of density function estimates.
Annals of Statistics, Vol. 1, 1071-1095.
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Motivation: the χ2 test

Back to density based tests...

Kernel estimator

f̂n,K(x) =
1

nh

n∑
i=1

K

(
x−Xi
h

)
=

1

n

n∑
i=1

Kh(x−Xi),

with rescaled kernel

Kh(u) =
1

h
K
(u
h

)
(the density of a r.v. hXK , being XK a r.v. with density K).

Rosenblatt, M. (1956)
Remarks on some nonparametric estimates of a density function.
Annals of Statistics, Vol. 27, 832–837.

Parzen, E. (1962)
On estimation of a probability density function and mode.
Annals of Statistics, Vol. 44, 1065–1076.
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Motivation: the χ2 test

Back to density based tests...
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Figura: Construction of the KDE.
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Motivation: the χ2 test

Back to density based tests...

Asymptotic distribution (under H0)

h−1/2(Tn − µ(K,ω))→ N(0, σ2(K,ω))

I Asymptotic mean:

µ(K,ω) =

(∫
f0(x)ω(x)dx

)(∫
K2(x)dx

)
I Asymptotic variance:

σ2(K,ω) = 2

(∫
(K ∗K)2(x)dx

)(∫
ω2(x)f2

0 (x)dx

)
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GoF tests for regression

Motivation: the χ2 test

Back to density based tests...

The use of kernel density estimator for testing (II)

H0 : f ∈ Fθ, Ha : f /∈ Fθ
we may construct a test statistic measuring the distance between f̂n,K and fθ̂
(being θ̂ a suitable estimator). For instance:

Tn = nh

∫ (
f̂n,K(x)− fθ̂(x)

)2

ω(x)dx

Bickel, P.J, and Rosenblatt, M. (1973)
On some global measures of the deviations of density function estimates.
Annals of Statistics, Vol. 1, 1071-1095.
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Motivation: the χ2 test

Back to density based tests...

General asymptotic structure

h−1/2(Tn − µ(K,ω))→ N
(
0, σ2(K,ω)

)
I Asymptotic mean:

µ(K,ω) =

(∫
fθ0(x)ω(x)dx

)(∫
K2(x)dx

)
I Asymptotic variance:

σ2(K,ω) = 2

(∫
(K ∗K)2(x)dx

)(∫
ω2(x)f2

θ0(x)dx

)
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GoF tests for regression

Motivation: the χ2 test

Back to density based tests...

Bachmann, D. and Dette. H. (2005)
A note on the Bickel–Rosenblatt test in autoregressive time series
Statistics and Probability Letters, Vol. 74, 221-234.

Cao, R. and Lugosi, G. (2005)
Goodness–of–fit tests based on the kernel density estimates
Scandinavian Journal of Statistics, Vol. 32, 559–616.

Tenreiro, C. (2009)
On the choice of the smoothing parameter for the BHEP goodness–of–fit
test
Computational Statistics and Data Analysis, Vol. 53, 1038–1053.
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Goodness–of–fit tests for regression

 ON THE APPLICATION OF "GOODNESS OF FIT" TABLES
 TO TEST REGRESSION CURVES AND THEORETICAL

 CURVES USED TO DESCRIBE OBSERVATIONAL OR
 EXPERIMENTAL DATA.

 BY KARL PEARSON, F.R.S.

 Let us suppose that a sample of size N with class groups n, is taken out of an
 indefinitelv large population of size M with class groups vq,, these classes being
 arranged according to two variates x and y. Then the mean of any array of x's
 for a given range of y variates connoted by the centre, ye, of this (usually small)
 range will be

 'S (lqV,XQ2)
 mp n . .......... (i).

 fly

 Here nq,, the number in the xq, yP class, and nP, the total numnber in the pth array
 of x's, will vary from sample to sanmple. But xq and y? will remain of course the
 same. Now let iip, be the mean value of m.p found from a large number A of
 samples and let us measure m = imp + 8mP from iiiP and nqp from P = NVvqP/M,
 and np from Nvp/M, or take nPfq = iiq + 8nP., and np in + 3n,. Here the
 diflerentials are statistical differences and do not at present denote that we are
 going to neglect their higher powers. From (i) we have

 mp~~~~T q+ Xm- PQ) 41_ n, + (8VV)2 (8n, 3 }

 Fn,, ~ ~ ~ ~ ~ 8%Q {+ _m =n + 8p --p .}
 71 P j711P TIP F,,

 Now we shall sum this for all A samples (dividing by A) and suppose that third

 order powers anid products of ntqV and n are negligible as compared with lower

 order powers and products*. If I denote a summation for all A samples

 ? (8mP) E (8nqp) _Y (8n.) -
 A = A A

 since all these quantities are measured from their ilean values. Thus we find

 m = S ( ) (i ? ) (8nP)2 Za (e (8nlP8nP))

 * Actually terms of the third order also vanish. I have not investigated whether this be true for
 terms of the fourth and higher orders.

This content downloaded from 193.144.81.190 on Tue, 14 Feb 2017 12:17:50 UTC
All use subject to http://about.jstor.org/terms

Pearson, K. (1916)
On the application of goodness–of–fit tables to test regression curves and
theoretical curves used to describe observational or experimental data.
Biometrika, Vol. 11(3), 239–261.
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Goodness–of–fit tests for regression

Kernel methods for regression estimation

Regression model

Regression is usually formalized as the expected value of Y conditionally on the
values of X:

m(x) = E(Y |X = x), for each x ∈ Supp(X)

Then, the response variable can be decomposed as:

Y = m(X) + ε

with ε an error variable with E(ε|X = x) = 0.

González–Manteiga, W. and Crujeiras, R.M.(2013)
An updated review of Goodness-of-Fit tests for regression models.
Test, Vol. 22, 361-411.
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Goodness–of–fit tests for regression

Kernel methods for regression estimation

The kernel estimator

For each x, the kernel regression estimator could be constructed as a weighted
average of observations Yi, taking into account the distance of Xi to x:

mnh(x) =
n∑
i=1

Wni(x)Yi,
n∑
i=1

Wni(x) = 1

Weights Wni(x) will be constructed taking a kernel K and a bandwidth h.

I Priestley–Chao (fixed design)

I Nadaraya–Watson

I Local polynomial
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Tests based on the estimation of the regression function
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Figura: Simulated data.

Model:

Y = 2x2 − 5x+ cos(2πx) + ε

with n = 500 and ε ∼ N(0, 1).
Test:

H0 : m is linear
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Tests based on the estimation of the regression function
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Figura: Expenditure on food vs. income.

Test:
H0 : m is linear

Or generally:

H0 : m ∈Mθ = {mθ, θ ∈ Θ}
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Tests based on the estimation of the regression function

Regression with complex data

In forest fire modelling, there is an interest in
relating fire orientation and size. Before stat-
ing a regression model (with fire orientation as
explanatory variable), an independence test has
been carried out.

E. Garćıa–Portugués et al. (2014)

A test for directional-linear independence, with applications to
wildfire orientation and size.
SERRA, Vol. 28, 1261–1275.

H. Xu and F.P. Schoenberg (2011)

Point process modeling of wilfire hazard in LA county, CA.
Ann. Appl. Stat., Vol. 5, 684–704.
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Tests based on the estimation of the regression function

hectares. Along coastal areas, watersheds smaller than 40,000
hectares were included as long as they contained at least 25 fires.
The final map was edited to exclude international watersheds,
since we do not have the perimeters of fires occurring in the Span-
ish portion of these watersheds. This resulted in a total of 102
watersheds, with sizes varying from 10,400 hectares to 277,835
hectares. Each fire was considered belonging to the watershed con-
taining its centroid. The 102 watersheds correspond to 83% of the
Portuguese mainland territory and contain 30,459 fire perimeters,
accounting for 90% of the 1975–2005 overall area burned. The
number of fires per watershed ranges from 25 to 2498, while the
area burned varies from 500 hectares to 380,900 hectares (Fig. 2).

2.3. Orientation vs direction

Circular data refers to data measured on an angular scale, in de-
grees or radians. There are two kinds of circular data, vectorial
(directional) and axial (orientational) circular data. Vectorial data
consists of a directed line where both the departure point and
direction of movement are known, e.g., the vanishing directions
of homing pigeons. Axial data consists of an axis or undirected line,
where either end of the line can be taken as the direction of move-
ment, such as a fracture in a rock exposure (Fisher, 1993).

The analysis of circular data requires the definition of an origin,
and a sense of rotation – clockwise or counterclockwise
(Jammalamadaka and Sengupta, 2001). In this work we computed
the orientation of each watershed and fire event. These orienta-
tions correspond to axial data, since we lack information on igni-
tion points or the actual fire spread direction. We considered

true north (N) as the origin and measured orientations clockwise.
Given that all orientations are axial, it follows that 0� (North, N)
is equivalent to 180� (South, S) (Fig. 3). For the sake of simplicity,
we shall refer to axial measurements in the compass
classifications: N/S, NE/SW, E/W and SE/NW, which can be re-
garded as equivalent to the orientations S/N, SW/NE, W/E and
NW/SE, respectively.

Fig. 3. Classification of axial data in terms of compass orientation. For each fire and
watershed perimeter an orientation value, hor, is calculated. Orientation values
range between 0� and 180� and were classified into compass classification as a
function of hor as follows: N/S ,hor2[0;22.5]^hor 2]157.5;180]; NE/
SW,hor2]22.5; 67.5]; E/W ,hor2]67.5;112.5]; SE/NW ,hor2]112.5;157.5]. Differ-
ent shades of grey distinguish the range of the intervals described above.

Fig. 4. Fire perimeter vertices are represented by its X and Y coordinates, in a bi-dimensional space. From all possible axis passing through the object center of mass, the first
principal component axis (PC1 axis), corresponds to the axis that maximizes the variance among projection of all points that constitute the object boundary and also reflects
the longest diagonal of the object. The second principal component axis (PC2 axis) is orthogonal to the PC1 axis. In this example principal component analysis of the vertices
resulted in a PC1 axis with NE/SW (31.8�) orientation. This orientation is measured considering True North as 0� and rotating clockwise.

A.M.G. Barros et al. / Forest Ecology and Management 264 (2012) 98–107 101

Fire orientation construction

I Data: orientations (X) and log–burnt
areas (Y ) of 26870 wildfires in Portugal
during 1985–2005.

I What is the relationship m between X and
Y ? Y = m(X) + σ(X)ε

I About m:
I Estimate m nonparametrically.
I Check if m can be specified as a certain

parametric model.
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Tests based on the estimation of the regression function

Empirical processes

The initial empirical process, for the p-dimensional case in the explanatory vari-
able, is given by:

αn(x) =
√
nhp (mnh(x)− Eθ̂(mnh(x)))

=
√
nhp

n∑
i=1

Wni(x) (Yi −mθ̂(Xi))

=
√
nhp

n∑
i=1

Wni(x)ε̂i

where Eθ̂ is the estimation of Eθ0 (with θ0 theoretical parameter under H0)

and θ̂ is a
√
n-consistent estimator of θ0 (for instance, least squares, maximum

likelihood, . . .).
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Tests based on the estimation of the regression function

Empirical processes (an example)

For instance, in order to test a polynomial regression model:

H0 : m(x) =

q∑
j=1

θjx
j−1, vs. Ha : m(x) 6=

q∑
j=1

θjx
j−1

we may consider Tn =

∫
αn

2(x)ω(x)dx. It holds that:

h−1/2(Tn − c1)
d−→ N(0, c2)

where

c1 =

∫
K̃2(x)dx

∫
σ2(x)ω(x)

f(x)
dx, c2 = 2

∫
(K̃ ∗ K̃)2(x)dx

∫
σ4(x)ω2(x)

f2(x)
dx
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Tests based on the estimation of the regression function

Smooth–based tests (I)

Consider H0 : m ∈Mθ. A first proposal:

d1(m,H0) =

∫
(m̂(x)− m̂θ̂(x))2 ω(x)dx,

where m̂θ̂(x) is the local polynomial regression function from
{(Xi,mθ̂(Xi))}

n
i=1.

Härdle, W. and Mammen, E. (1993)
Comparing nonparametric versus parametric regression fits.
Annals of Statistics, Vol. 21, 1926–1947.
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Tests based on the estimation of the regression function

Smooth–based tests (II)

A second proposal:

d2(m,H0) =
1

n

∑
i 6=j

Kh(Xi −Xj)(Yi −mθ̂(Xi))(Yj −mθ̂(Xj))ω(Xi).

Zheng, J.X. (1998)
A consistent test of functional form via nonparametric estimation
techniques.
Journal of Econometrics, Vol. 75, 263–289.
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Tests based on the estimation of the regression function

Smooth–based tests (III)

A third proposal:

d3(m,H0) =

n∑
i=1

(Yi −mθ̂(Xi))
2 ω(Xi)−

n∑
i=1

(Yi − m̂h(Xi))
2 ω(Xi).

Dette, H. (1999)
A consistent test for the functional form of a regression based on a
difference of variance estimators.
Annals of Statistics, Vol. 27, 1012–1040.
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Tests based on the estimation of the regression function

Drawbacks of the smoothing approach

1. Bandwidth choice.

2. Slow rate of convergence of Tn to its normal limit.

3. Unknown curves involved in the test statistic requires estimation.

W. González–Manteiga, R.M. Crujeiras GoF tests for regression



GoF tests for regression

Tests based on the estimation of the regression function

The generalized likelihood ratio test

Model

Yi = m(Xi) + εi, i = 1, . . . , n

where {εi} is a sequence of i.i.d. N (0, σ2) random variables and the Xi have
density support in [0, 1]. Assume that:

M = {m ∈ L2[0, 1];

∫
(m(k)(x))2dx ≤ c}

Testing problem

H0 : m(x) = θ0 + θ1x vs. Ha : m(x) 6= θ0 + θ1x

The loglikelihood associated with the previous model is given by:

l(m,σ) = −n log(
√

2πσ2)− 1

2σ2

n∑
i=1

(Yi −m(Xi))
2
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Tests based on the estimation of the regression function

The generalized likelihood ratio test

Log–likelihood, revisited

Denote by θ̂0 and θ̂1 the maximum likelihood estimators (MLE) under H0 and
m̂MLE the MLE under M. This estimator is the one that minimizes:

n∑
i=1

(Yi −m(Xi))
2 subject to

∫
(m(k)(x))2dx ≤ c.

Then, m̂MLE is the smoothing spline with smoothing parameter such that
‖m̂(k)

MLE‖
2 = c. Therefore,

RSS0 =

n∑
i=1

(Yi − θ̂0 − θ̂1Xi)
2, RSS1 =

n∑
i=1

(Yi − m̂MLE(Xi))
2.
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Tests based on the estimation of the regression function

The generalized likelihood ratio test

Likelihood ratio test

λn = l(m̂MLE , σ̂)− l(m̂0, σ̂0) =
n

2
log

RSS0

RSS1
,

with σ̂2 = RSS1/n, σ̂2 = RSS0/n and m̂0(x) = θ̂0 + θ̂1x.

A note of caution...

Although in this particular situation, the MLE exists under M models, the con-
stant c is unknown and in many situations, m̂MLE may not exist...
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Tests based on the estimation of the regression function

The generalized likelihood ratio test

Generalized likelihood ratio test (GLRT)

The generalized likelihood ratio tests (GLRT) considers an estimator under M
which may not coincide with the MLE, for instance, the local linear fit m̂h. In
this way:

l(m̂h, σ̂) = −n
2

log(RSS1)− n

2

(
1 + log

2π

n

)
,

l(m̂0, σ̂0) = −n
2

log(RSS0)− n

2

(
1 + log

2π

n

)
,

and the GLRT statistic is given by:

λn = l(m̂h, σ̂)− l(m̂0, σ̂0) =
n

2
log

RSS0

RSS1
,

where

RSS1 =

n∑
i=1

(Yi − m̂h(Xi))
2.
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Tests based on the estimation of the regression function

The generalized likelihood ratio test

Generalized likelihood ratio test (GLRT)

Under some regularity conditions, in Fan et al. (2001) it is proved that:

rkλn ∼ χ2
νn , νn =

rkck|Ω|
h

where |Ω| is the measure of the support of X, rk = ck/dk, ck = K(0)− 1
2
‖K‖2

and dk = ‖K − 1
2
K ∗K‖2.

Fan, J., Zhang, C. and Zhang, J. (2001)
Generalized likelihood ratio statistics and Wilks phenomenon.
Annals of Statistics, Vol. 29, 153–193.

Fan, J. and Jiang, J. (2007)
Nonparametric inference with generalized likelihood ratio tests.
Test, Vol. 16, 409–444.
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Tests based on the estimation of the regression function

Tests based on the empirical distribution of the residuals

Location–scale regression model

Assume that the regression model can be written in a location–scale form as

Y = m(X) + σ(X)ε,

with ε independent of X and with error distribution Fε(y) = P(ε ≤ y) =
P ((Y −m(X))|σ(X) ≤ y).
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Tests based on the estimation of the regression function

Tests based on the empirical distribution of the residuals

Location–scale regression model

If θ̃0 denotes the argument that minimizes E((m(X) −mθ(X))2) over the pa-
rameter set Θ ⊂ Rq, then mθ̃0

is the parametric model with minimum distance
to m, and the error distribution under this model is built as

Fε0(y) = P(ε0 ≤ y) = P
(
(Y −mθ̃0

(X))|σ(X) ≤ y
)
.

Hence, the null hypothesis H0 : m ∈ Mθ is true if and only if the error distri-
butions Fε and Fε0 are the same.
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Tests based on the estimation of the regression function

Tests based on the empirical distribution of the residuals

The process

This result opens a way for GoF considering continuous functionals of the process
{F̂ε(·)− F̂ε0(·)}, where the estimators of the error distribution can be given by

F̂ε(y) =
1

n

n∑
i=1

I
(
Yi −mnh(Xi)

σ̂(Xi)
≤ y
)

=
1

n

n∑
i=1

I(ε̂i ≤ y)

and

F̂ε0(y) =
1

n

n∑
i=1

I
(
Yi −mθ̂(Xi)

σ̂(Xi)
≤ y
)

=
1

n

n∑
i=1

I(ε̂i0 ≤ y)
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Tests based on the estimation of the regression function

Tests based on the empirical distribution of the residuals

The variance

And the variance estimator is given by

σ̂2(x) =

n∑
i=1

Wni(x)Y 2
i −m2

nh(x)

being {Wni}ni=1 a sequence of Nadaraya–Watson weights and θ̂ a least squares
estimator.

Van Keilegom, I., WGM and Sánchez–Sellero, C. (2008)
Goodness–of–fit tests in parametric regression based on the estimation of
the error distribution.
Test, Vol. 17, 401–415.

Neumeyer, N. and Van Keilegom, I. (2010)
Estimating the error distribution in nonparametric multiple regression with
applications to model testing.
Journal of Multivariate Analysis, Vol. 101, 1067–1078.
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Tests based on the estimation of the regression function

Tests based on the empirical distribution of the residuals

The test

Based on the empirical distribution of the residuals, the Kolmogorov–Smirnov
and Cramér–von–Mises tests are given by:

TnKS = n1/2 sup
y∈R
|F̂ε(y)−F̂ε0(y)|, and TnCM = n

∫
(F̂ε(y)−F̂ε0(y))2dF̂ε0(y).

From this methodology, a test for the error distribution can be also constructed,
without further assumptions on m and σ, just comparing the empirical distribu-
tion of the residuals {ε̂i}ni=1 with the one estimated under H0 : Fε ∈ Fθ.
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Tests based on the estimation of the regression function

Tests designed for avoiding the curse of dimensionality

Pearson, K. (1900)
On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling.
Philosophical Magazine, Vol. L, 157-175.
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Tests based on the estimation of the regression function

Tests designed for avoiding the curse of dimensionality

Motivation

A great deal of the theory developed during the nineties, considers tests statistics
constructed from the comparison of a nonparametric estimator of the regression
model and an estimator under the null hypothesis (that is, based on the αn
process).

In this case, the curse of dimensionality as p increases, being p the dimension of
the explanatory variable, can be appreciated.

Lavergne, P. and Patilea, V. (2008)
Breaking the curse of dimensionality in nonparametric testing.
Journal of Econometrics, Vol. 143, 103–122.

Xia, Y. (2009)
Model checking in regression via dimension reduction.
Biometrika, Vol. 96, 133–148.
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Tests based on the estimation of the regression function

Tests designed for avoiding the curse of dimensionality

Dimension reduction

Inspired on the projection pursuit ideas, the null hypothesis H0 : m ∈ Mθ is
true if and only if m = mθ0 ∈ Mθ, and this is also equivalent to E(ε|X) =
E(ε0|X) = E(Y −mθ0(X)|X) = 0. In addition, this is also equivalent to:

sup
β, ‖β‖=1

sup
ν
|E(ε|βtX = ν)| = 0⇔ sup

β, ‖β‖=1

E(εE(ε|βtX)) = 0

under some regularity conditions, and this allows for the construction of sthe
following test:

Tn = sup
β, ‖β‖=1

∑
i<j

Kh(βt(Xi −Xj))(Yi −mθ̂(Xi))(Yj −mθ̂(Xj)).
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Tests based on the estimation of the regression function

Tests designed for avoiding the curse of dimensionality

Dimension reduction

Another interesting idea consists in projecting the covariate X in the direction
of β = β0 such that this β0 (with ‖β0‖ = 1) minimizes

E2(ε− E(ε|βtX)) = E2(ε−mβ(X)),

the single–indexing procedure obtained through the corresponding empirical
counterparts.
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Tests based on the estimation of the regression function

Tests designed for avoiding the curse of dimensionality

Dimension reduction

This enables to construct test statistics such as

Tn =
1

n

n∑
i=1

ω(Xj)
(
ε̂j0 − m̂β̂j

(β̂tjXj)
)2

where

β̂j = arg mı́n
β, ‖β‖=1

∑
i6=j

(
ε̂i0 − m̂j

β(Xi)
)2

, j = 1, . . . , n

being

m̂j
β(x) =

1

nf̂ jβ(Xj)

∑
i 6=j

Kh(βt(x−Xi))ε̂i0, f̂ jβ(x) =
1

n

∑
i 6=j

Kh(βt(x−Xi)).
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Calibration, size and power

 W. PALIN ELDERTON 159

 TABLE I.

 x2 In' =3 n'=4 n'=5 n'=6 n'=7 n'=8 n'=9 n'=10 n' 11

 1 *606531 *801253 *909796 *962566 *985612 *994829 *998249 *999438 999828

 2 *367879 *572407 *735759 *849146 *919699 *959840 *981012 *991468 *996340

 3 *?23130 *391625 *557825 *699986 *808847 *885002 *934357 *964295 *981424
 4 *135335 *261464 *406006 *549416 *676676 *779778 *857123 *911413 *947347

 5 *082085 *171797 *287298 A415880 *543813 *659963 757576 *834308 891178

 6 *049787 *111610 *199148 *306219 *423190 *539750 *647232 *739919 *815263

 7 *030197 *071897 *135888 *220640 320847 *428880 *536632 *637119 *725444

 8 *018316 *046012 *091578 *156236 *238103 *332594 *433470 *534146 *628837

 9 *011109 *029291 *061099 *109064 *173578 *252656 *342296 A437274 *532104

 10 *006738 *018566 *040428 *075235 *124652 *188573 *265026 *350485 *440493
 11 *004087 *011726 *026564 *051380 *088376 *138619 *201699 *275709 *357518
 12 *002479 007383 *017351 *034787 *061969 *100558 *151204 *213308 *285057

 13 {001503 *004637 *011276 *023379 *043036 *072109 *111850 *162607 *223672
 14 '00912 *002905 *007295 *015609 *029636 *051181 *081765 *122325 *172992

 15 *000553 *001817 *004701 *010363 *020256 *036000 *059145 *090937 *132061

 16 *000335 *001134 *003019 *006844 *013754 *025116 *042380 *066881 *099632

 17 *000203 *000707 *001933 *004500 *009283 *017396 *030109 *048716 *074364

 18 *000123 *000440 *001234 *002947 *006232 *011970 *021226 *035174 *054964

 19 *000075 (00273 *000786 *001922 *004164 08187 *014860 *025193 *040263

 20 *000045 *000170 *000499 *001250 *002769 *005570 *010336 *017913 *029253

 21 *000028 (00105 i000317 *000810 001835 *003770 *007147 *012650 *021093

 22 *000017 *000065 300200 *000524 *001211 *002541 *004916 *008880 *015105

 2.3 *000010 @00040 '000127 -000338 *000796 *001705 *003364 *006197 *010747

 24 ^000006 {O0025 *000080 -000217 000522 001139 *002292 *004301 *007600

 25 *000004 000016 '000050 'O0139 100341 000759 *001554 *002971 *005345
 26 '000002 I00010 000032 000090 00223 '000504 '001050 002043 003740
 27 000001 {000006 i000020 {000057 1000145 i000333 {000707 {001399 1002604
 28 '000001 04 '0 12 *000037 *000094 {000220 {000474 (00954 1001805
 29 X000001 *000002 1000008 000023 000061 (00145 000317 (00648 001246

 30 '000000 000001 {000005 *000015 {)0039 000095 {000211 {000439 000857

 40 000000 '000000 O *0000 )0001 *000001 *000003 '000008 '000017
 50 *000000 '000 'K *000000 '000000 '000000 '000000 '000000 *000000 '000000
 60 000000 '000000 000000 '000000 '000000 000000 '000000 '000000 000000

 70 {000000 c" '000000 {000000 0 ()00000 0)00000 0)00000 '(00000
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 TABLES FOR TESTING THE GOODNESS OF FIT

 OF THEORY TO OBSERVATION.

 By W. PALIN ELDERTON, Actuary.

 [Received October 18, 1901.]

 On the Test for Random Sampling.

 ANY theoretical description by means of curve or series is ceteris paribus
 admissible as a graduation of a given set of frequency observations, provided the
 observed values do not differ from the values provided by this theory by more
 than the reasonable deviations due to random sampling. There may be utilitarian

 reasons (e.g. relative fewness of descriptive constants, or their easy calculation) or
 philosophical reasons (e.g. general theories as to the nature and distribution of
 causes producing frequency phenomena) why we should adopt one theoretical

 description rather than another, but apart from such reasons that theoretical
 description is best, which describes the observed frequencies with the "greatest
 probability." By "{describing the observed frequencies with the greatest proba-

 bility" we understand a good although conventional test of fitness. Suppose the
 theoretical description of the frequencies to be the actual distribution of the
 whole population; we ask in how many cases per 100 in a series of random

 samplings should we differ from the theoretical distribution by as wide a system of
 deviations as that observed, or by a still wider system? In other words we want
 to find out the probability P that in random sampling deviation-systems as great

 as or greater than that actually observed will arise. This point has been dealt
 with in a paper by Professor K. Pearson published in the Philosophical Magazine*,
 and it is there shown that if there be n'= n + 1 frequency groups in the series,

 and mr and Mr' be the theoretical and observed frequencies in any group, it is
 necessary to find

 ( squares of differences of theoretical

 ...=S {(m,-. M") sum and observed frequencies
 mr theoretical frequency

 * On the Criterion that a given System of Deviations from the Probable in the case of a Correlated
 System of Variables is such that it can be reasonably supposed to have arisen from Random Sampling,
 Vol. L. pp. 157-175, July, 1900.
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Elderton, W.P. (1902)
Tables for testing the goodness–of–fit of
theory to observation.
Biometrika, Vol. 1, 155–163.
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GoF tests for regression

Calibration, size and power

In the general testing problem:

H0 : g ∈ G = {gθ}θ∈Θ, vs. Ha : g /∈ G = {gθ}θ∈Θ

with test statistic Tn = T (gn, gθ̂) where g may be Fθ, fθ or mθ, calibration of
critical points is crucial.

Critical point calibration

Estimate cα such that:
PH0(Tn ≥ cα) = α
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Calibration, size and power

How can we estimate cα?

I Using the asymptotic normality (Case gn = fnh or gn = mnh).

I Approximating the distribution of the empirical process αn.

I Using Bootstrap: naive, wild,...
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Some extensions (models, data, contexts)

Semiparametric and nonparametric models

Partially linear model

H0PL : E(X|Y ) = θ′0X1 +m2(X2), X = (X1, X2)

Test proposal:

Tn =
1

n(n− 1)

n∑
i=1

∑
i 6=j

Kh(Xi −Xj)ε̂i0ε̂j0f̂2(X2i)f̂2(X2j)

with εi0 = Yi − θ′0X1i −m2(X2i).

Fan, Y. and Li, Q. (1996)

Consistent model specification tests: omitted variables and semiparametric functional forms.
Econometrica, 64, 865-890.
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Some extensions (models, data, contexts)

Semiparametric and nonparametric models

Simplified model

H0SM : E(X|Y ) = m1(X1)

Test proposal:

Tn =
1

n(n− 1)

n∑
i=1

∑
i 6=j

Kh(Xi −Xj)ε̂i0ε̂j0f̂1(X1i)f̂1(X1j)

with ε̂i0 = Yi − m̂1(X1i).

Fan, Y. and Li, Q. (1996)

Consistent model specification tests: omitted variables and semiparametric functional forms.
Econometrica, 64, 865-890.
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Some extensions (models, data, contexts)

Semiparametric and nonparametric models

Single index model

H0SIM : E(X|Y ) = H(θ′0X)

with H unknown link. Test proposal:

Tn =
1

n(n− 1)

n∑
i=1

∑
i6=j

Kh(Xi −Xj)ε̂i0ε̂j0f̂θ̂(θ̂
′Xi)f̂θ̂(θ̂

′Xj)

with εi0 = Yi −H(θ′0Xi).
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Some extensions (models, data, contexts)

Semiparametric and nonparametric models

Futher models and methods

I Also for testing (generalized) additive models

I Tests for the variance function:

I Comparison of regression curves
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Some extensions (models, data, contexts)

Complex data

Handling regression models with complex data

In some cases, the sample from the regression model may not provide complete
information about the underlying population or may exhibit some complexities
that should be captured in the modelling processes. GoF tests on regression
models may take into account:

I Dependence (spatial and/or temporal)

I Censoreship and/or truncation

I Missing data

I Measurement errors

I Biased data
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Some extensions (models, data, contexts)

Recent advances in other contexts

I Data: orientations (X) and log–burnt
areas (Y ) of 26870 wildfires in Portugal
during 1985–2005.

I What is the relationship m between X and
Y ? Y = m(X) + σ(X)ε

I About m:
I Estimate m nonparametrically.
I Check if m can be specified as a certain

parametric model.
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Some extensions (models, data, contexts)

Recent advances in other contexts

I Assessing a parametric model: H0 : m ∈MΘ = {mθ : θ ∈ Θ}.
I The proposed test statistic is a smoothed weighted L2–distance between
m̂h,p and mθ̂:

Test statistic

Tn =

∫
Ωq

(
m̂h,p(x)− Lh,pmθ̂(x)

) 2f̂n,L(x)w(x)ωq(dx)

where Lh,pm(x) =
∑n
i=1 Wni (x)m(Xi).

W. Härdle and E. Mammen (1993)

Comparing nonparametric versus parametric regression fits.
Ann. Statist., 21(4):1926–1947.

W. González-Manteiga and R.M. Crujeiras (2013)

An updated review of goodness-of-fit tests for regression models.
TEST, 22(3):361–411.
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Some extensions (models, data, contexts)

Recent advances in other contexts

Theorem (Limit distribution of Tn)

Under H0 : m ∈MΘ

h
−q/2

(
Tn − C(L, q)

∫
Ωq

σ
2
θ0

(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν

2
θ0

)
,

where σ2
θ0

(x) = E
[
(Y −mθ0

(X))2|X = x
]
.

I If L is the von Mises kernel,

ν2
θ0

= (8π)−
q
2

∫
Ωq

σ4
θ0

(x)w(x)2 ωq(dx).

I Results under local alternatives.

I Calibration in practice by a consistent bootstrap procedure.

Garćıa-Portugués, E., Van Keilegom, I., Crujeiras, R.M. and González-Manteiga, W. (2016)

Testing parametric models in linear-directional regression.
Scandinavian Journal of Statistics, Vol. 43, 1178–1191.
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Some extensions (models, data, contexts)

Intensity function

Wildfire patterns

I Do arson and natural wildfires have the same spatial distribution?

I If two point processes, X1 = {xi}N1
i=1 and X2 = {xj}Nj=N1+1, have the

same spatial structure ⇒ their densities λ01 and λ02 of event locations are
equal.

I Hypothesis test:

H0 : λ01(x) = λ02(x) vs. Ha : λ01(x) 6= λ02(x)
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Some extensions (models, data, contexts)

The test statistic

I Conditional on N1 = n1 and N2 = N −N1 = n2, X1 and X2 are random
samples of the bivariate distributions with densities λ01(x) and λ02(x).

I Test statistics: a squared discrepancy measure

T =

∫
W

(λ01 (x)− λ02(x))2 dx

= ψ0,1 + ψ0,2 − (ψ0,12 + ψ0,21)

where ψ0,j =
∫
W
λ0j (x)2 dx and ψ0,ij =

∫
W
λ0i (x)λ0j (x) dx, for

j = 1, 2.

Duong, T., Goud, B. and Schauer, K. (2012)
Closed-form density-based framework for automatic detection of cellular
morphology changes.
Proceedings of the National Academy of Sciences of the United States of
America, Vol. 109, 8382-8387.

Fuentes-Santos, I., González-Manteiga, W., Mateu, J. (2017)
A nonparametric test for the comparison of first-order structures of spatial
point processes.
Spatial Statistics
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Some extensions (models, data, contexts)

The test statistic

I Our test statistic is:

T̂ = ψ̂0,1 + ψ̂0,2 −
(
ψ̂0,12 + ψ̂0,21

)
where

ψ̂0,1 =
1

n2
1

n1∑
i1=1

n1∑
i2=1

kG1

(
xi1 − xi2

)
, ψ̂0,2 =

1

n2
2

n∑
j1=n1+1

n∑
j2=n1+1

kG2

(
xj1 − xj2

)
ψ̂0,12 =

1

n1n2

n1∑
i=1

n∑
j=n1+1

kG1

(
xi − xj

)
, ψ̂0,21 =

1

n1n2

n1∑
i=1

n∑
j=n1+1

kG2

(
xi − xj

)
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Some extensions (models, data, contexts)

The test statistic

I In the multivariate density framework Duong et al. (2012) showed that,
under H0, T̂ → N(µT , σT ) and proposed nonparameric estimators of µT
and σT .

I This property can be directly extended to the Poisson point process
framework.

I Problem: the null distribution of T̂ for small datasets or non-Poisson point
processes may not be normal.

I Solution: use nonparametric bootstrap to estimate the distribution of T̂
under H0.
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Some extensions (models, data, contexts)

Comparison of wildfire patterns in Galicia

I Dataset: 6851 wildfires registered in Galicia (NW-Spain) from January to
September 2006.

I Negligible number of wildfires from October onwards.
I Null hypotheses:

I The spatial distribution of wildfires does not depend on their cause.
I The spatial distribution of wildfires remains constant over time.

I Kernel intensity estimators with 2-stages plug-in bandwidth matrices.

I Bootstrap calibration (B = 1000)
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Some extensions (models, data, contexts)

Wildfires by cause

I p− value < 0,01 in all the pairwise comparisons.
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Some extensions (models, data, contexts)

Wildfires by month
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Some extensions (models, data, contexts)

Wildfires by month

n J F Mr A My Jn Jl Ag

J 60
F 659 < 0.01
Mr 89 < 0.01 < 0.01
A 268 < 0.01 < 0.01 < 0.01
My 441 < 0.01 < 0.01 < 0.01 0.12
Jn 638 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Jl 1789 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Ag 2238 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
S 669 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

I Application to real data
I The spatial distribution of wildfires during 2006 depended on their cause.
I The spatial distribution of wildfires during 2006 varied over months.
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Some extensions (models, data, contexts)

Wildfires by month

 Miscellanea 1.91

 on the assumption that n'=4 in fourfold tables, and consequently should not be used when, as is

 almost always the case, the marginal totals are obtained from the data" (toc. cit. p. 91).

 I hold those tables are quite correctly calculated for n'=4, and those who attempt to modify

 them by assuming n'=2 will be dealing with an entirely different problem. Namely, they will
 be considering not the improbability of the given sample as one of all possible samples of the

 given size, which it really is, but one of the indefinitely smaller number of samples that have

 fixed marginal totals. We do not find the probable error of r for a tetrachoric table* on the

 assumption that the marginal totals are fixed. We find it on the assumption that the marginal
 totals also vary from sample to sample, and when we have found it, then we substitute in the

 result the values of not only the marginal totals, but the cell-contents, a, b, c, d of the sample
 itself for those of the unknown population. With x2 we go through an exactly similar process of

 reasoning. If by this procedure we in some mysterious manner tied our degrees of freedom down

 to the values of the cell-contents used in our formula and adopted from our sample there could

 be no probable error for r, for the values of a, b, c, and d are all required and used. I trust my
 critic will pardon me for comparing him with Don Quixote tiltinig at the windmill; he must either

 destroy himself, or the whole theory of probable errors, for they- are invariably based on using
 sample values for those of the sampled population unknown to us. For example here is an
 argument for Don Quixote of the simplest nature: In the sth category of a population N the

 frequency is n8, a sample shows m8 in a total H. The standard deviation of this frequency is

 /4a (_.. ._.

 But we don't know the population sampled and accordingly obtain an approximate value of the

 above standard deviation by writing for 8 n and taking for the standard deviation of m8

 V/8 (1 - M) . In doing this it is not a question even of using a marginal total, we have used

 a cell frequenicy found from our sample. We have therefore according to our critic reduced our
 possibilities of freedom by selecting out of all possible samples those with m8 in the sth cell-this
 is exactly parallel to our reducing our freedom by "fixing" marginal proportions or moment-
 coefficients. But if m8 be fixed, it is ridiculous to talk of a variation of the m8 frequency. There-

 fore either m8=O or m.=Mi, or the usual theory and practice of probable errors are wholly at
 fault. I think this will illustrate what I mean by Don Quixote and the windmill.

 II.

 Is Tuberculosis to be regarded firom the Aetiological Standpoint as an acute disease
 of Childhood ? By Dr KR. F. ANDVORD (Christiania). Tubercle, Vol. III. No. 3,
 December, 1921.

 This paper is, we must confess, unconvincing. The author holds that in a community that
 has long been subject to tuberculosis the time of infection should be fixed in the infantile years
 for the great majority of cases and consequently we should protect children for the first three or
 four years from infection.

 As evidence of his views he takes a graph of what he calls a "population frame" which is
 really the well-known " number living in a stationary population " (4) and represents within this
 graph the numbers dying from tuberculosis and the numbers who have suffered from it at each
 age. We are doubtful if his graphs for deaths are correctly drawn. They are made to rise
 suddenly for about a year and then fall till age 7 but we suspect that they should fall from birth
 till age 7. We cannot justify his chart (No. VIII) which gives the whole population and the

 * Phil. Trans. Vol. 195 A, p. 14.
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