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Diffusion

Diffusion equations describe how a continuous medium
(say, a population) spreads to occupy the available space.

Models come from all kinds of applications: fluids, chemicals, bacteria,
animal populations, the momentum of a viscous (Newtonian) fluid
diffuses, there is diffusion in the stock market,...

Diffusion of particles in a water solution

So the question is : what is diffusion for a mathematician? how to
analyze diffusion mathematically?
This question has received two quite different answers in recent history.
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The two ways to diffusion
The two answers:

First direction: Is diffusion more or less related to random walk ? This
is a correct answer, and this approach leads to Brownian motion and
Stochastic Processes, with the famous Ito equation:

dx = bdt +
1
2
σdW.

Second direction: how to explain it with “standard mathematics” based
on Analysis? The answer is PDEs of parabolic type, as explained by
Kolmogorov in the 1930s. The mother equation is the Heat Equation:

∂tu = ∆u.

Understanding this double way has been the source of much effort and
the work goes on today.
Here we will follow the way of Analysis with PDEs, inaugurated by
Joseph Fourier (1807, 1822) in an apparently different context, Heat
Propagation.
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Expanding the basic model

Some of the problems we face today

How much of it can be explained with linear models, how much is
essentially nonlinear? which are the most relevant mathematical
models?

The stationary states of diffusion belong to an important world, elliptic
equations. Elliptic equations, linear and nonlinear, have many relatives:
diffusion, fluid mechanics, waves of all types, quantum mechanics, ...

The Laplacian ∆ is really the King of Differential Operators.
The fractional Laplacian is close family. How strong is the theory and
application of the so-called nonlocal or long-range operators that
include the fractional Laplacian family?
Are we able to treat complex systems and describe their behaviour with
the combination of the tools we have?

Main tools : Modelling, Analysis, Stochastics, Asymptotics and Numerics.
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Alessio and Spain

UIMP Santander Summer School 2011

During and after his stay in Texas there appeared many Spanish
coauthors.

Real Academia de Ciencias nominated Alessio foreign corresponding
member, Dec 2018. Bienvenido a nuestra Academia!
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Heat Equation

We begin our presentation with the Heat Equation

ut = ∆u + f

and the analysis proposed by J. Fourier, 1807, 1822 : (Key words:
Fourier decomposition, spectrum).
The mathematical models of heat propagation and diffusion have made
great progress both in theory and application,
It had a strong influence on 5 areas of Mathematics: PDEs, Functional
Analysis, Inf. Dim. Dyn. Systems, Probability and Diff. Geometry.
It has also had an immense influence in Science and Engineering. The
heat example is generalized into the theory of linear parabolic
equations, which is nowadays a basic topic in any advanced study of
PDEs.
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The heat Equations

The Heat Equation and the parabolic families of related PDEs

ut =
∑

ij aij∂i∂ju +
∑

i bi∂iu + cu + f

and
ut =

∑
ij ∂i(aij∂ju) +

∑
i ∂i(biu) + cu + f

(where (aij) is a positive definite matrix, possible variable with space
and time) are a powerful tool in advanced mathematics.

The HE and he Parabolic Equation Models have produced a huge
number of concepts, techniques and connections for pure and applied
science. Today mathematically educated people talk often and casually
about the Gaussian function, separation of variables, Fourier analysis,
spectral decomposition, Dirichlet forms, Maximum Principles,
Brownian motion, generation of semigroups, functional inequalities,
positive operators in Banach spaces, entropy dissipation, ...
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The heat equation semigroup and Gauss

When heat propagates in free space the natural problem is the initial
value problem

ut = ∆u, u(x, 0) = f (x) (1)

which is solved by convolution with the evolution version of the
Gaussian function

G(x, t) = (4πt)−n/2exp (−|x|2/4t). (2)

Note that G has very nice analytical properties for t > 0, but note that
G(x, 0) = δ(x), a Dirac mass. G works as a kernel (Green, Gauss).
(G is the Fundamental Solutions. This is a key idea that we would like
to copy, they are different in stationary and evolution problems. The
concept is problematic in some nonlinear PDEs and very useful in some
of them. G is self-similar).

The maps St : u0 7→ u(t) := u0 ∗ G(·, t) form a linear continuous
semigroup of contractions in all Lp spaces 1 ≤ p ≤ ∞.
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Regularity and asymptotics

Regularity. Solutions in the standard class are unique, exist globally in
time and they are C∞ smooth in space and time. For nonnegative data
they are strictly positive.

Asymptotic behaviour as t→∞, convergence to the Gaussian.
Under very mild conditions on u0 it is proved that

lim
t→∞

tn/2(u(x, t)−M G(x, t)) = 0 (3)

uniformly, if M =
∫

u0(x) dx. For convergence in Lp less is needed.
Thus,

lim
t→∞
‖(u(x, t)−M G(x, t)‖1 = 0 (4)

This is the famous Central Limit Theorem in its continuous form
(Probability).

(we will try to repeat those questions over and over; the answers vary
with the models)
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Heat equation graphs. Conflicting views

The comparison of ordered dissipation vs underlying chaos

Left, the evolution to a nice Gaussian

Right, a sample of random walk, origin of Brownian motion
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A detailed text expanding on the topic of the talk

J. L. Vázquez. The mathematical theories of diffusion. Nonlinear and fracti-
onal diffusion,

♠ ArXiv 1804.08398v1.

♣ appeared as Chapter 5 of Springer Lecture Notes in Mathematics 2186,
“Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Di-
rections”, CIME Summer Course in Cetraro, Italy, 2016; pp. 205–278.
Volume Authors: J.A. Carrillo, M. del Pino, A. Figalli, G. Mingione, JLV.
Editors: M. Bonforte, G. Grillo.
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Nonlinear equations. Los senderos que bifurcan

Let us take a step forward and expand the family of diffusive models in
a difficult direction, that of including nonlinearities.
Indeed, the heat example and the linear models are not representative
enough, since many models of science are nonlinear in a form that is
very non-linear. A general model of nonlinear diffusion takes the
divergence form

∂tH(u) = ∇ · ~A(x, u,Du) + B(x, t, u,Du)

with monotonicity conditions on H and ∇p ~A(x, t, u, p) and structural
conditions on ~A and B. Posed in the 1960s (Serrin et al.)
In this generality the mathematical theory is too rich to admit a simple
description. This includes the big areas of Nonlinear Diffusion and
Reaction Diffusion, where I have been working.
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Nonlinear heat flows

Many specific examples, now considered the “classical nonlinear
diffusion models”, have been investigated to understand in detail the
qualitative features and to introduce the quantitative techniques, that
happen to be many and from very different origins.
Typical nonlinear diffusion: Stefan Problem (phase transition between
two fluids like ice and water),
Hele-Shaw Problem (potential flow in a thin layer between solid plates),
Porous Medium Equation: ut = ∆(um),
Evolution p-Laplacian Eqn: ut = ∇ · (|∇u|p−2∇u).

Typical reaction diffusion: Fujita model ut = ∆u + up. Also diffusion+
absorption ut = ∆u− up.
The novel phenomena are blow-up and extinction. A huge community
working on that. I spent part of my life with them.

The systems are very important and the models are quite different. The
chemotaxis system by Keller and Segel is very popular.

Finally, recall that “elliptic and parabolic problems go together well”.
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Un sendero reciente. Fractional diffusion

Replacing Laplacians by fractional Laplacians is motivated by the need to
represent anomalous diffusion. In probabilistic terms, it replaces
next-neighbour interaction of Random Walks and their limit, the Brownian
motion, by long-distance interaction. The main mathematical models are the
Fractional Laplacians that have special symmetry and invariance properties.

The Basic Stationary and basic evolution equations

(−∆)su = f (x, u) ut + (−∆)su = 0

Intense work in Stochastic Processes for some decades,
and the fractional Laplacian was known in Harmonic Analysis
but research in Analysis of PDEs did not start in force until less than two
decades ago. A new from the work done by and around Prof. Caffarelli in
Texas, in particular his seminal work with L. Silvestre to be mentioned soon.
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The fractional Laplacian operator

Different formulas for fractional Laplacian operator.
We assume that the space variable x ∈ Rn, and the fractional exponent
is 0 < s < 1. First, pseudo differential operator given by the Fourier transform:

̂(−∆)su(ξ) = |ξ|2sû(ξ)

Singular integral operator:

(−∆)su(x) = Cn,s

∫
Rn

u(x)− u(y)

|x− y|n+2s dy

With this definition, it is the inverse of the Riesz integral operator (−∆)−su.
This one has kernel C1|x− y|n−2s, which is not integrable.
Take the random walk for Lévy processes:

un+1
j =

∑
k

Pjkun
k

where Pik denotes the transition function which has a . tail (i.e, power decay
with the distance |i− k|). In the limit you get an operator A as the infinitesimal
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Au(x) = lim
h→0
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The fractional Laplacian operator II

The α-harmonic extension: Find first the solution of the (n + 1) problem

∇ · (y1−α∇v) = 0 (x, y) ∈ Rn × R+; v(x, 0) = u(x), x ∈ Rn.

Then, putting α = 2s we have

(−∆)su(x) = −Cα lim
y→0

y1−α ∂v
∂y

When s = 1/2 i.e. α = 1, the extended function v is harmonic (in n + 1
variables) and the operator is the Dirichlet-to-Neumann map on the base space
x ∈ Rn. It was proposed in PDEs by Caffarelli and Silvestre, 2007.
This construction is generalized to other differential operators, like the
harmonic oscillator, by Stinga and Torrea, Comm. PDEs, 2010.

The semigroup formula in terms of the heat flow generated by ∆:

(−∆)sf (x) =
1

Γ(−s)

∫ ∞
0

(
et∆f (x)− f (x)

) dt
t1+s .
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Nonlocal elliptic problems. A short note

The interest in using fractional Laplacians in modeling diffusive processes has a
wide literature, especially when one wants to model long-range diffusive
interaction, and this interest has been activated by the recent progress in the
mathematical theory as a large number works on elliptic equations, mainly of
the linear or semilinear type (Caffarelli school; Bass, Kassmann, and others)

Elliptic problems are usually posed on bounded domains of the space. While in
Rn all the previous versions of fractional Laplacian are equivalent, in a bounded
domain Ω ⊂ Rn we have to re-examine all of them. Two main alternatives are
studied in probability and PDEs, corresponding to different options about what
happens to particles at/outside the boundary or what is the domain of the energy
functionals. There are several alternatives. You will hear more.

There are many works on the subject. Here is a good basic reference to
fractional elliptic work by
Xavier Ros-Otón. Nonlocal elliptic equations in bounded domains: a survey,
arXiv:1504.04099.
For a very recent reference to the topic by me and collaborators
J.I. Dı́az, D. Gómez-Castro, J.L. Vázquez. The fractional Schrödinger equation
with general nonnegative potentials. The weighted space approach, ArXiv
1804.08398v1.
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Mathematical theory of the Fractional Heat Equation

The Linear Problem is
ut + (−∆)s(u) = 0

We take x ∈ Rn, 0 < m <∞, 0 < s < 1, with initial data in u0 ∈ L1(Rn).
Normally, u0, u ≥ 0.
This model represents the linear flow generated by the so-called Lévy processes
in Stochastic PDEs, where the transition from one site xj of the mesh to another
site xk has a probability that depends on the distance |xk − xj| in the form of an
inverse power for j 6= k. The power we take is c |xk − xj|−n−2s. The range is
0 < s < 1. The limit from random walk to the continuous equation is done by
E. Valdinoci, in From the long jump random walk to the fractional Laplacian,
Bol. Soc. Esp. Mat. Apl. 49 (2009), 33-44.
The solution of the linear equation can be obtained in Rn by means of
convolution with the fractional heat kernel

u(x, t) =

∫
u0(y)Pt(x− y) dy,

and people in probability (like Blumental and Getoor) proved in the 1960s that

Pt(x) � t(
t1/s + |x|2

)(n+2s)/2 ⇒ look at the fat tail.
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in Stochastic PDEs, where the transition from one site xj of the mesh to another
site xk has a probability that depends on the distance |xk − xj| in the form of an
inverse power for j 6= k. The power we take is c |xk − xj|−n−2s. The range is
0 < s < 1. The limit from random walk to the continuous equation is done by
E. Valdinoci, in From the long jump random walk to the fractional Laplacian,
Bol. Soc. Esp. Mat. Apl. 49 (2009), 33-44.
The solution of the linear equation can be obtained in Rn by means of
convolution with the fractional heat kernel

u(x, t) =

∫
u0(y)Pt(x− y) dy,

and people in probability (like Blumental and Getoor) proved in the 1960s that

Pt(x) � t(
t1/s + |x|2

)(n+2s)/2 ⇒ look at the fat tail.



24

Mathematical theory of the Fractional Heat Equation

The Linear Problem is
ut + (−∆)s(u) = 0

We take x ∈ Rn, 0 < m <∞, 0 < s < 1, with initial data in u0 ∈ L1(Rn).
Normally, u0, u ≥ 0.
This model represents the linear flow generated by the so-called Lévy processes
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The paper B. Barrios, I. Peral, F. Soria, E. Valdinoci. “A Widder’s type
theorem for the heat equation with nonlocal diffusion” Arch. Ration. Mech.
Anal. 213 (2014), no. 2, 629-650, studies the theory in classes of (maybe)
large functions and studies the question: is every solution representable by the
convolution formula. The answer is yes if the solutions are ‘nice’ strong
solutions and the growth in x is no more that u(x, t) ≤ (1 + |x|)a with a < 2s.

Our recent paper M. Bonforte, Y. Sire, J. L. Vázquez. “Optimal Existence and
Uniqueness Theory for the Fractional Heat Equation”, Arxiv:1606.00873v1
solves the problem of existence and uniqueness of solutions when the initial
data is a locally finite Radon measure with the condition∫

Rn
(1 + |x|)−(n+2s) dµ(x) <∞ . (5)

Moreover we prove that any constructed solution by convolution, or any very
weak solution u ≥ 0, has an initial trace µ which is a measure in the above class
Ms. So the result closes the problem of the Widder theory for the fractional
heat equation posed in Rn.

The fractional version of the Central Limit Theorem works, I gave a proof in
“Asymptotic behaviour for the Fractional Heat Equation in the Euclidean
space”, CVEE, 63 (2018).
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The first nonlinear model

Since 2007 I have been involved in the analysis of several models of nonlinear
diffusion equations driven by fractional Laplacians and other nonlocal
integro-differential operators.

The first model: called Porous Medium Equation with Fractional Pressure

ut = ∇ · (u∇p), p = K(u). (6)

where u is a function of the variables (x, t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is
related to u via a linear integral operator K.

ut = ∇ · (u∇(−∆)−su)

We will explain below this model, worked in collaboration with L. Caffarelli
since 2007. Main features are:
-Existence is OK, but no good uniqueness theorem in several dim.
-It does not obey a maximum principle: This makes life difficult.
-It has solutions with compact support and free boundaries.
-The L1-L∞-Cα smoothing effect works.
-Entropy dissipation methods apply beautifully.
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Second model

The second natural model is given by the equation we have called
Fractional PME:

∂tu + (−∆)sum = 0. (7)

This model arises from stochastic differential equations when modeling
for instance heat conduction with anomalous properties and one
introduces jump processes into the modeling.
A complete analysis of the Cauchy problem done by
A. de Pablo, F. Quirós, Ana Rodrı́guez, and J.L.V., in 4 papers appeared
in Advances in Mathematics (2011), Comm. Pure Appl. Math. (2012),
J. Math. Pures Appl. (2014), and J. Eur. Math. Soc. (2017).
In the classical Bénilan-Brezis-Crandall style, a semigroup of weak
energy solutions is constructed, the L1 − L∞ smoothing effect works,
Cα regularity (if m is not near 0),
Nonnegative solutions have infinite speed of propagation for all m and s
⇒ no compact support. Further smoothness for positive solutions.
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Bounded and unbounded domains

There are a number of other models, like fractional p-Laplacian models,
chemotaxis systems with fractional diffusion (lots in Carrillo’s talk),
KPP propagation models, see the JLV Springer CIME survey paper.
Much effort has been devoted recently by us to understanding the
properties of fractional flows posed on bounded domains with Dirichlet
conditions, as a complement to previous work on the whole space,
x ∈ Ωc.

The Dirichlet condition is not imposed on the boundary but on the
whole exterior of the domain.

The definition of fractional Laplacian is open to several choices. The
behaviour of the solutions differs a lot with the choices.

We refer to work in collaboration with M. Bonforte, A. Segatti, Y. Sire,
D. Stan, B. Volzone, and lately with Alessio Figalli.
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Work with Figalli

Two recent papers appeared in 2018 contain the results of discussions by
Matteo B., Alessio F. and myself, started in Austin in 2016, on a basic
regularity question: the way solutions of these nonlinear degenerate fractional
problems take up the zero Dirichlet boundary conditions.
It was known that some elliptic problems one version of the Fractional
Laplacian tends to satisfy the standard Hopf principle at the boundary, while the
most current version (called restricted fract Laplacian) does not, and indeed
positive solutions are Cs regular and no more (famous paper by X. Ros Oton +
J. Serra 2014).
So we were busy with the same question for nonnegative solutions for the
evolution problem

∂tu + (−∆)sum = 0, m > 1. (8)

and its stationary equivalent

vp + (−∆)sv = f . (9)

Note v = um, p = 1/m. Thanks to Alessio’s magical computations we found a
gap between the evolution and the elliptic versions, that happens for some flat
initial data of the evolution that refuse to regularize as they should.
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Nonlocal nonlinear diffusion model I

Modeling: the problem arises from the consideration of a continuum, say, a
fluid, represented by a density distribution u(x, t) ≥ 0 that evolves with time
following a velocity field v(x, t), according to the continuity equation

ut +∇ · (u v) = 0.

We assume next that v derives from a potential, v = −∇p, as happens in fluids
in porous media according to Darcy’s law, an in that case p is the pressure. But
potential velocity fields are found in many other instances, like Hele-Shaw
cells, and other recent examples.

We still need a closure relation to relate u and p. In the case of gases in porous
media, as modeled by Leibenzon and Muskat, the closure relation takes the
form of a state law p = f (u), where f is a nondecreasing scalar function, which
is linear when the flow is isothermal, and a power of u if it is adiabatic.
The linear relationship happens also in the simplified description of water
infiltration in an almost horizontal soil layer according to Boussinesq. In both
cases we get the standard porous medium equation, ut = c∆(u2).
⇒ See JLV PME Book (2007) for these and other applications (around 20!).
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⇒ See JLV PME Book (2007) for these and other applications (around 20!).
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Nonlocal diffusion model. The problem

The diffusion model with nonlocal effects proposed in 2007 with Luis
Caffarelli uses the derivation of the PME but with a closure relation of the form
p = K(u), where K is a linear integral operator, which we assume in practice
to be the inverse of a fractional Laplacian. Hence, p es related to u through a
fractional potential operator, K = (−∆)−s, 0 < s < 1, with kernel

k(x, y) = c|x− y|−(n−2s)

(i.e., a Riesz operator). We have (−∆)sp = u.

The diffusion model with nonlocal effects is thus given by the system

ut = ∇ · (u∇p), p = K(u). (10)

where u is a function of the variables (x, t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is
related to u via a linear operator K. ut = ∇ · (u∇(−∆)−su)

The problem is posed for x ∈ Rn, n ≥ 1, and t > 0, and we give initial
conditions

u(x, 0) = u0(x), x ∈ Rn, (11)

where u0 is a nonnegative, bounded and integrable function in Rn.
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Nonlocal diffusion Model I. Applications
Equations of the more general form ut = ∇ · (σ(u)∇Lu) have appeared
recently in a number of applications in particle physics. Thus, Giacomin and
Lebowitz (J. Stat. Phys. (1997)) consider a lattice gas with general short-range
interactions and a Kac potential, and passing to the limit, the macroscopic
density profile ρ(r, t) satisfies the equation

∂ρ

∂t
= ∇ ·

[
σs(ρ)∇δF(ρ)

δρ

]
See also (GL2) and the review paper (GLP). The model is used to study phase
segregation in (GLM, 2000).
More generally, it could be assumed that K is an operator of integral type
defined by convolution on all of Rn, with the assumptions that is positive and
symmetric. The fact the K is a homogeneous operator of degree 2s, 0 < s < 1,
will be important in the proofs. An interesting variant would be the Bessel
kernel K = (−∆ + cI)−s. We are not exploring such extensions.
Modeling dislocation dynamics as a continuum. This has been studied by P.
Biler, G. Karch, and R. Monneau (2008), and then other collaborators,
following old modeling by A. K. Head on Dislocation group dynamics II.
Similarity solutions of the continuum approximation. (1972).
This is a one-dimensional model. By integration in x they introduce viscosity
solutions a la Crandall-Evans-Lions. Uniqueness holds.
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Our first project. Results

Existence of weak energy solutions and property of finite propagation
L. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with
fractional potential pressure, Arch. Rational Mech. Anal. 2011; arXiv
2010.

Existence of self-similar profiles, renormalized Fokker-Planck equation
and entropy-based proof of stabilization
L. Caffarelli and J. L. Vázquez, Asymptotic behaviour of a porous
medium equation with fractional diffusion, appeared in Discrete Cont.
Dynam. Systems, 2011; arXiv 2010.

Regularity in three levels: L1 → L2, L2 → L∞, and bounded implies Cα

L. Caffarelli, F. Soria, and J. L. Vázquez, Regularity of porous medium
equation with fractional diffusion, J. Eur. Math. Soc. (JEMS) 15 5
(2013), 1701–1746. The very subtle case s = 1/2 is solved in a new
paper L. Caffarelli, and J. L. Vázquez, appeared in ArXiv and as
Newton Institute Preprint, 2014
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Our first project. Results

Limit s→ 1 S. Serfaty, and J. L. Vazquez, Hydrodynamic Limit of
Nonlinear Diffusion with Fractional Laplacian Operators, Calc. Var.
PDEs 526, online; arXiv:1205.6322v1 [math.AP], may 2012.

A presentation of this topic and results for the Proceedings from the
Abel Symposium 2010 is here.

J. L. Vázquez. Nonlinear Diffusion with Fractional Laplacian
Operators. in “Nonlinear partial differential equations: the Abel
Symposium 2010”, Holden, Helge & Karlsen, Kenneth H. eds.,
Springer, 2012. Pp. 271–298.

Last reference is proving that the selfsimilar solutions of Barenblatt
type (Caffarelli-Vazquez, Biler-Karch-Monneau) are attractors with
calculated rate in 1D
Exponential Convergence Towards Stationary States for the 1D Porous
Medium Equation with Fractional Pressure, by J. A. Carrillo, Y. Huang,
M. C. Santos, and J. L. Vázquez. JDE, 2015.
Uses entropy analysis. Problem is open (and quite interesting in higher
dimensions).
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Work that we do at this moment

We recall that Model 1 can be written as a system

ut = ∇ · (u∇p), p = K(u). (12)

where u is a function of the variables (x, t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is
related to u via a linear operator K.

But it is not clear why Ku = (−∆)−su. People have suggested other nonlocal
integral operators. Much work is going on.

In a project with Antonio Segatti, started one year ago in Shanghai, we use the
choice Ku = (−∆)+su. This leads to a higher order equation (differ. order
2 + 2s) that interpolates between PME (s = 0) and 4th order nonlinear thin
film equation (s = 1). There are related 1d models by Imbert, Mellet, and
Tarhini. Their application is again crack dynamics.
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Main estimates for this model

We recall that the equation of M1 is ∂tu = ∇ · (u∇K(u)), posed in the whole
space Rn.
We consider K = (−∆)−s for some 0 < s < 1 acting on Schwartz class
functions defined in the whole space. It is a positive essentially self-adjoint
operator. We let H = K1/2 = (−∆)−s/2.
We do next formal calculations, assuming that u ≥ 0 satisfies the required
smoothness and integrability assumptions. This is to be justified later by
approximation.

Conservation of mass
d
dt

∫
u(x, t) dx = 0. (13)

First energy estimate:

d
dt

∫
u(x, t) log u(x, t) dx = −

∫
|∇Hu|2 dx. (14)

Second energy estimate

d
dt

∫
|Hu(x, t)|2 dx = −2

∫
u|∇Ku|2 dx. (15)
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Main estimates
Conservation of positivity: u0 ≥ 0 implies that u(t) ≥ 0 for all times.

L∞ estimate. We prove that the L∞ norm does not increase in time.
Proof. At a point of maximum of u at time t = t0, say x = 0, we have

ut = ∇u · ∇P + u ∆K(u).

The first term is zero, and for the second we have −∆K = L where L = (−∆)q

with q = 1− s so that

∆Ku(0) = −Lu(0) = −
∫

u(0)− u(y)

|y|n+2(1−s) dy ≤ 0.

This concludes the proof.

We did not find a clean comparison theorem, a form of the usual maximum
principle is not proved for this Model. However, good comparison works for
Model 2

∂tu + (−∆)sum = 0,

presented above, actually, it helps produce a very nice theory.

Finite propagation is true for model M1. Infinite propagation is true for model
M2.
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Boundedness

Solutions are bounded in terms of data in Lp, 1 ≤ p ≤ ∞.
For Model 1 Use (the de Giorgi or the Moser) iteration technique on the
Caffarelli-Silvestre extension as in Caffarelli-Vasseur.
Or use energy estimates based on the properties of the quadratic and
bilinear forms associated to the fractional operator, and then the
iteration technique

Theorem (for M1) Let u be a weak solution the IVP for the FPME
with data u0 ∈ L1(Rn) ∩ L∞(Rn), as constructed before. Then, there
exists a positive constant C such that for every t > 0

sup
x∈Rn
|u(x, t)| ≤ C t−α‖u0‖γL1(Rn)

(16)

with α = n/(n + 2− 2s), γ = (2− 2s)/((n + 2− 2s). The constant C
depends only on n and s.
This theorem allows to extend the theory to data u0 ∈ L1(Rn), u0 ≥ 0,
with global existence of bounded weak solutions.
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Energy and bilinear forms

Energy solutions: The basis of the boundedness analysis is a property
that goes beyond the definition of weak solution. The general energy
property is as follows: for any F smooth and such that f = F′ is
bounded and nonnegative, we have for every 0 ≤ t1 ≤ t2 ≤ T ,∫

F(u(t2)) dx−
∫

F(u(t1)) dx = −
∫ t2

t1

∫
∇[f (u)]u∇p dx dt =

−
∫ t2

t1

∫
∇h(u)∇(−∆)−su dx dt

where h is a function satisfying h′(u) = u f ′(u). We can write the last
integral as a bilinear form∫

∇h(u)∇(−∆)−su dx = Bs(h(u), u)

This bilinear form Bs is defined on the Sobolev space W1,2(Rn) by

Bs(v,w) = Cn,s

∫∫
∇v(x)

1
|x− y|n−2s∇w(y) dx dy . (17)
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Energy and bilinear forms II

This bilinear form Bs is defined on the Sobolev space W1,2(Rn) by

Bs(v,w) = Cn,s
∫∫
∇v(x) 1

|x−y|n−2s∇w(y) dx dy =∫∫
N−s(x, y)∇v(x)∇w(y) dx dy

where N−s(x, y) = Cn,s|x− y|−(n−2s) is the kernel of operator (−∆)−s.
After some integrations by parts we also have

Bs(v,w) = Cn,1−s

∫∫
(v(x)− v(y))

1
|x− y|n+2(1−s) (w(x)− w(y)) dx dy

(18)
since −∆N−s = N1−s.
It is known (Stein) that Bs(u, u) is an equivalent norm for the fractional
Sobolev space W1−s,2(Rn).
We will need in the proofs that Cn,1−s ∼ Kn(1− s) as s→ 1, for some
constant Kn depending only on n.
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∫∫
∇v(x) 1

|x−y|n−2s∇w(y) dx dy =∫∫
N−s(x, y)∇v(x)∇w(y) dx dy

where N−s(x, y) = Cn,s|x− y|−(n−2s) is the kernel of operator (−∆)−s.
After some integrations by parts we also have

Bs(v,w) = Cn,1−s

∫∫
(v(x)− v(y))

1
|x− y|n+2(1−s) (w(x)− w(y)) dx dy

(18)
since −∆N−s = N1−s.
It is known (Stein) that Bs(u, u) is an equivalent norm for the fractional
Sobolev space W1−s,2(Rn).
We will need in the proofs that Cn,1−s ∼ Kn(1− s) as s→ 1, for some
constant Kn depending only on n.
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Additional and Recent work, open problems

The asymptotic behaviour as t→∞ is a very interesting topic
developed in a paper with Luis Caffarelli. This was our first work
(2008, published 2011). Rates of convergence are found in dimension
n = 1 (Carrillo, Huang, Santos, JLV) but they are not available for
n > 1, they are tied to some functional inequalities that are not known.
The study of the free boundary is in progress, but it is still open for
small s > 0.
The equation is generalized into ut = ∇ · (um−1∇(−∆)−su) with
m > 1. Recent work with D. Stan and F. del Teso shows that finite
propagation is true for m ≥ 2 and propagation is infinite is m < 2. This
is quite different from the standard porous medium case s = 0, where
m = 1 is the dividing value.
Gradient flow in Wasserstein metrics is work by S. Lisini, E. Mainini
and A. Segatti, Arch. Ration. Mech. Anal. 2017, A gradient flow
approach to the porous medium equation with fractional pressure.
Thanks to the Pavia people!
Previous work by J. A. Carrillo et al. in n = 1.
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The questions of uniqueness and comparison are solved in dimension
n = 1 thanks to the trick of integration in space used by Biler, Karch,
and Monneau. New tools are needed to make progress in several
dimensions.
Recent uniqueness results. Paper by X H Zhou, W L Xiao, J C Chen,
Fractional porous medium and mean field equations in Besov spaces,
EJDE 2014. They obtain local in time strong solutions in Besov spaces.
Thus, for initial data in Bα1,∞ if 1/2 ≤ s < 1 and α > n + 1 and n ≥ 2.
New results by Serfaty and collaborators
The problem in a bounded domain with Dirichlet or Neumann data has
not been much studied. But I did recent work with Quoc Hung Nguyen,
appeared in Comm PDE, 2018.
Good numerical studies are needed. But they are being done in
Trondheim and Bilbao (Jakobsen and Teso), and also in Carrillo’s
group (Imperial, London), Nochetto and co (US),...
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Present and future. A celebration
The fractional diffusion field, both in elliptic and parabolic version, has turned
out a very productive source of multiple senderos que se bifurcan. It is now an
occupation for many talented senior and younger people, too many to mention
here. Such colleagues spread over all continents (in places we would like to
visit).
Fractional diffusion combines nicely with other effects, like aggregation, drift,
reaction, fluid dynamics, information and economy models, ... We will hear
about free boundaries and change of phase, and maybe about chemotaxis.
And so on.
I am just arrived from London where we are doing fractional versions of
Newtonian vortex flow equations, work with J.A. Carrillo and D. Gómez-
Castro. In the next step we need new methods!
Viatge a Itaca. These mathematical worlds are a magic play of words and
symbols, plus so many hours of calculations, to produce fruitful abstractions
that can be computed. If you venture into this wonderful field, do remember
that you are not alone: in case of doubt or despair, in case the right theorem
eludes you, if nothing else works, then

there is always the one and only Alessio Figalli.
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Thank you for your attention
and a very happy future, Alessio and UPC

moltes gràcies / muchas gracias / tante grazie
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