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Summary

Outline of the talk

o Introduction to the Parabolic Problem on Domains

e The Classical Porous Medium Equation (PME)

o A Brief Summary about the Dirichlet Problem for PME
in few “Blackboards”

e The Fractional PME I: Basic theory

o Three Different Fractional Laplacians on Bounded Domains
o Existence, Uniqueness and Boundedness

e The Fractional PME II: Sharp Boundary Behaviour

o Positivity Estimates and Infinite Speed of Propagation
o Global Harnack Principles

o Asymptotic Behaviour

e Anomalous Boundary Behaviour and Counterexamples
o Some Numerics
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Introductlon to the Parabolic Problem on Domains

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

u+ LF(u) =0, in(0,+00) x
(HDP) u(0,x) = up(x), inQ

u(t,x) =0, on the lateral boundary.

Sharp Boundary Behaviour
0000000000000

where:

o Q c R¥ is a bounded domain with smooth boundary and N > 1.
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Introductlon to the Parabolic Problem on Domains

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations
u+ LF(u) =0, in(0,+00) x
(HDP) u(0,x) = up(x), in
u(t,x) =0, on the lateral boundary.

where:
o Q c R¥ is a bounded domain with smooth boundary and N > 1.
@ The linear operator £ will be:
e sub-Markovian operator
o densely defined in L' ().
A wide class of linear operators fall in this class:
The classical Laplacian and all fractional Laplacians on domains.
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Introductlon to the Parabolic Problem on Domains

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations
u+ LF(u) =0, in(0,+00) x
(HDP) u(0,x) = up(x), in
u(t,x) =0, on the lateral boundary.

where:
o Q c R¥ is a bounded domain with smooth boundary and N > 1.
@ The linear operator £ will be:
e sub-Markovian operator
o densely defined in L' ().
A wide class of linear operators fall in this class:
The classical Laplacian and all fractional Laplacians on domains.
@ The most studied nonlinearity is F(u) = |u|""'u, withm > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F' are allowed.
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Introductlon to the Parabolic Problem on Domains

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations
u+ LF(u) =0, in(0,+00) x
(HDP) u(0,x) = up(x), in
u(t,x) =0, on the lateral boundary.

where:
o Q c R¥ is a bounded domain with smooth boundary and N > 1.
@ The linear operator £ will be:
e sub-Markovian operator
o densely defined in L' ().
A wide class of linear operators fall in this class:
The classical Laplacian and all fractional Laplacians on domains.
@ The most studied nonlinearity is F(u) = |u|""'u, withm > 1.
We deal with Degenerate diffusion of Porous Medium type.
More general classes of “degenerate” nonlinearities F' are allowed.
@ The homogeneous boundary condition is posed on the lateral boundary,
which may take different forms, depending on the particular choice of
the operator L.
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A Brief Summary ab%ut the Dirichlet Problem for PME in few “Blackboards”

The Classical Porous Medium Equation (PME)

A Brief Summary about the Dirichlet Problem for PME
in few “Blackboards”
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e The Fractional PME I: Basic theory

o Three Different Fractional Laplacians on Bounded Domains

o Existence, Uniqueness and Boundedness of solutions



u,+LF(u)=0, in(0,+00) x Q
(HDP) u(0,x) = up(x), inQ
u(t,x) =0, on the lateral boundary.

@ We have seen what happens when £ = —A is the classical Laplacian
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Recalling the General Dirichlet Problem

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

u+ LF(u) =0, in(0,+00) x

(HDP) u(0,x) = up(x), inQ
u(t,x) =0, on the lateral boundary.
@ We have seen what happens when £ = —A is the classical Laplacian

@ We now focus our attention to a particular scenario:

e When £ = (—A)*, withs € (0,1) is a Fractional Laplacian: there are
three different choices of fractional Laplacian on bounded domains.
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Recalling the General Dirichlet Problem

Homogeneous Dirichlet Problem for
Fractional Nonlinear Degenerate Diffusion Equations

u+ LF(u) =0, in(0,+00) x

Sharp Boundary Behaviour
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(HDP) u(0,x) = up(x), inQ
u(t,x) =0, on the lateral boundary.
@ We have seen what happens when £ = —A is the classical Laplacian

@ We now focus our attention to a particular scenario:

e When £ = (—A)*, withs € (0,1) is a Fractional Laplacian: there are
three different choices of fractional Laplacian on bounded domains.

o When F(u) = |u|""'u, withm > 1 have the classical PME nonlinearity
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Three Different Fractional Laplacians on Bounded Domains

Reminder about the fractional Laplacian operator on RY

We have several equivalent definitions for (—Agw)*

@ By means of Fourier Transform,

(=2 )1 (&) = [E77(©).-

This formula can be used for positive and negative values of s.
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Three Different Fractional Laplacians on Bounded Domains

Reminder about the fractional Laplacian operator on RY

We have several equivalent definitions for (—Agw)*

@ By means of Fourier Transform,

(=2 )1 (&) = [E77(©).-

This formula can be used for positive and negative values of s.

© By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(—Agv)’g(x) = cn,s PV /RN 8(x) —g(z) dz,

|X _ Z‘N+25

where cy ¢ > 0 is a normalization constant.
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Three Different Fractional Laplacians on Bounded Domains

Reminder about the fractional Laplacian operator on RY

We have several equivalent definitions for (—Agn)*:

@ By means of Fourier Transform,

(=2 )1 (&) = [E77(©).-

This formula can be used for positive and negative values of s.

© By means of an Hypersingular Kernel:
if 0 < s < 1, we can use the representation

(—Agv)'g(x) = cnys P.V,/ 8(x) —g(z) dz,

o e —

where cy ¢ > 0 is a normalization constant.

© Spectral definition, in terms of the heat semigroup associated to the standard
Laplacian operator:

(Bw)st) = gy [ (427 e —59) 7
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Three Different Fractional Laplacians on Bounded Domalns

The Spectral Fractional Laplacian operator (SFL)

(-a Z j & ¢i(x) = ﬁ /OOO (e228(x) — () tldis-

@ Ag is the classical Dirichlet Laplacian on the domain €2
@ EIGENVALUES: 0 < A\ < X\ < ... < A\ < Ayy <...and )\ < &/
@ EIGENFUNCTIONS: ¢; are the eigenfunctions of the classical Laplacian Ag:

o1 < dist(-,00) and loj| < dist(-,090),
and ¢; are as smooth as 92 allows: 9Q € CF = ¢; € C(Q) N CX(Q)

b= [ sa@as wih ol =1
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Three Different Fractional Laplacians on Bounded Domalns

The Spectral Fractional Laplacian operator (SFL)

(8050 = S X800 = 1 [ (27600 - 660)

@ Ag is the classical Dirichlet Laplacian on the domain €2
@ EIGENVALUES: 0 < A\ < X\ < ... < A\ < Ayy <...and )\ < &/
@ EIGENFUNCTIONS: ¢; are the eigenfunctions of the classical Laplacian Ag:

o1 < dist(-,00) and loj| < dist(-,090),
and ¢; are as smooth as 92 allows: 9Q € CF = ¢; € C(Q) N CX(Q)
b= [ sa@as wih ol =1
The Green function of SFL satisfies, letting 67 (- ) := dist( -, 99),

! 57 (x) ) ( () ) ;
Al Al|, with|yv=1
7_))|N—2lY <|x7y"Y ‘x7y|’Y

K4 G(x,y) =<

=
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Three Different Fractional Laplacians on Bounded Domalns

The Spectral Fractional Laplacian operator (SFL)

(8050 = S X800 = 1 [ (27600 - 660)

@ Ag is the classical Dirichlet Laplacian on the domain €2
@ EIGENVALUES: 0 < A\ < X\ < ... < A\ < Ayy <...and )\ < &/
@ EIGENFUNCTIONS: ¢; are the eigenfunctions of the classical Laplacian Ag:

o1 < dist(-,00) and loj| < dist(-,090),
and ¢; are as smooth as 92 allows: 9Q € CF = ¢; € C(Q) N CX(Q)
b= [ sa@as wih ol =1
The Green function of SFL satisfies, letting 67 (- ) := dist( -, 99),

1 67 (x) ) ( 57 (v) ) :
Al A1), with[v=1
s (e ) (P55

Lateral boundary conditions for the SFL J

K4 G(x,y) =<

u(t,x) =0, in (0,00) x 02 .




()utllne of the talk Classical Porous Medium Equation The Fracuonal PME I: Basic theory Sharp Boundary Behaviour
0000000000000 0000 0000000000000

Three Different Fractional Laplacians on Bounded Domalns

N <«

Definition via the hypersingular kernel in RY, “restricted” to functions that are zero outside 2.

The (Restricted) Fractional Laplacian operator (RFL)

s g(x) ( ) 9 re)
(—Aje)’g(x) = cns PV. /]RN W dz, with supp(g) C 2.

where s € (0, 1) and ¢y s > 0 is a normalization constant.

® (—Aq)"is a self-adjoint operator on L*(2) with a discrete spectrum:

@ EIGENVALUES: 0 <X\ <X < ... <N < Nyr < ...and N < 27V,
Eigenvalues of the RFL are smaller than the ones of SFL: A; < )/ forall j € N.

@ EIGENFUNCTIONS: ¢; € C*(Q2) N C* () (J. Serra - X. Ros Oton), and
@1 =< dist(-,00Q)° and loj| < dist(-,00)",
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Three Different Fractional Laplacians on Bounded Domalns

Definition via the hypersingular kernel in RV, “restricted” to functions that are zero outside 2.

The (Restricted) Fractional Laplacian operator (RFL)

s g(x) ( ) 9 re)
(—Aje)’g(x) = cns PV. /]RN W dz, with supp(g) C 2.

where s € (0, 1) and ¢y s > 0 is a normalization constant.

® (—Aq)"is a self-adjoint operator on L*(2) with a discrete spectrum:

@ EIGENVALUES: 0 <X\ <X < ... <N < Nyr < ...and N < 27V,
Eigenvalues of the RFL are smaller than the ones of SFL: A; < )/ forall j € N.

@ EIGENFUNCTIONS: ¢; € C*(Q2) N C* () (J. Serra - X. Ros Oton), and
@1 =< dist(-,00Q)° and loj| < dist(-,00)",

The Green function of RFL satisfies, letting 7 ( - ) := dist( -, 9Q2),

Sy 1 07 (x) 07 (y) . —
w60 = s (s A1) (e 1) - =]
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Three Different Fractional Laplacians on Bounded Domains

Definition via the hypersingular kernel in RV, “restricted” to functions that are zero outside 2.

The (Restricted) Fractional Laplacian operator (RFL)

s g(x) ( ) 9 re)
(—Aje)’g(x) = cns PV. /]RN W dz, with supp(g) C 2.

where s € (0, 1) and ¢y s > 0 is a normalization constant.

® (—Aq)"is a self-adjoint operator on L*(2) with a discrete spectrum:

@ EIGENVALUES: 0 <X\ <X < ... <N < Nyr < ...and N < 27V,
Eigenvalues of the RFL are smaller than the ones of SFL: A; < )/ forall j € N.

@ EIGENFUNCTIONS: ¢; € C*(Q2) N C* () (J. Serra - X. Ros Oton), and
@1 =< dist(-,00Q)° and loj| < dist(-,00)",

The Green function of RFL satisfies, letting 7 ( - ) := dist( -, 9Q2),

1 07 (x) 07 (y) .
K4) Gx,y) = ( /\1) <7/\1 , with|yv=s
= o e M e 1=+
Lateral boundary conditions for the RFL

u(t,x) =0, in (0,00) x (R¥\ Q).

References. (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-
2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005)
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Three Different Fractional Laplacians on Bounded Domalns
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf(x) = P.V. J;)Ez |£J(r23 dy, with <s<1,

N[ —

@ It is a self-adjoint operator on L*(£2) with a discrete spectrum (;, ¢;)

@ EIGENFUNCTIONS: ¢; € C*~'(€) N C**(Q) (MB, A Figalli, J. L. Vizquez)

dr=dist( 007 and | S disi,00)"
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Three Different Fractional Laplacians on Bounded Domalns
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf(x) = P.V. J;)Ez |£J(r23 dy, with <s<1,

N[ —

@ It is a self-adjoint operator on L*(£2) with a discrete spectrum (;, ¢;)

@ EIGENFUNCTIONS: ¢; € C*~'(€) N C**(Q) (MB, A Figalli, J. L. Vizquez)

o1 =< dist(-,@Q)z“l and || < dist(-, 59)2571 ’

The Green function G(x, y) satisfies, letting 67 ( - ) := dist( -, 992),

1 57 (x) 07 (y) .
Glx,y) = 1 1), with[y =251
Gx) |x — y[N=2 (Ix—yl” " ) (lx—yl7 " b
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Three Different Fractional Laplacians on Bounded Domains
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf(x) = P.V. J;)Ez |£J(r23 dy, with <s<1,

N[ —

@ It is a self-adjoint operator on L*(£2) with a discrete spectrum (;, ¢;)

@ EIGENFUNCTIONS: ¢; € C*~'(€) N C**(Q) (MB, A Figalli, J. L. Vizquez)

o1 =< dist(-,@Q)z“l and || < dist(-, ag)zaﬂ ’

The Green function G(x, y) satisfies, letting 67 ( - ) := dist( -, 992),

1 57 (x) 57(y) .
Glx,y) = Al AL, th-:2'71
(®) |x — y[N=2 (Ix—yl7 ) (lx—yl7 o s

Remarks.

@ This is a third model of Dirichlet fractional Laplacian not equivalent to SFL.
nor to RFL.



()utlme of the talk Classical Porous Medium Equation The Fracuonal PME I: Basic theory Sharp Boundary Behaviour
0000000000000 0000 0000000000000

Three Different Fractional Laplacians on Bounded Domains
Introduced in 2003 by Bogdan, Burdzy and Chen.

Censored (Regional) Fractional Laplacians (CFL)

Lf(x) = P.V. J;)Ez |£J(r23 dy, with <s<1,

N[ —

@ It is a self-adjoint operator on L*(£2) with a discrete spectrum (;, ¢;)

@ EIGENFUNCTIONS: ¢; € C*~'(€) N C**(Q) (MB, A Figalli, J. L. Vizquez)

o1 =< dist(-,aQ)z“l and || < dist(-, ag)zaﬂ 7

The Green function G(x, y) satisfies, letting 67 ( - ) := dist( -, 992),

1 57 (x) 07 (y) .
G(x,y 1 1), with[y =251
Glxy) = |x — y[N=2 (Ix—yl7 " ) (lx—yl7 " b

Remarks.

@ This is a third model of Dirichlet fractional Laplacian not equivalent to SFL.
nor to RFL.

@ Roughly speaking, s € (0, 1/2] corresponds to Neumann boundary conditions.
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@ Roughly speaking, s € (0, 1/2] corresponds to Neumann boundary conditions.
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Exnstence, Uniqueness and Boundedness of solutions

Basic theory: existence, uniqueness and boundedness (in one page)
Ou=—-Lu", in (0, +00) x Q2
(CDP) u(0,x) = uo(x), inQ
u(t,x) =0, on the lateral boundary.

We can formulate a “dual problem”, using the inverse £~ as follows

U = —u", where Ut,x) == L u(t, )] (x) = / u(t,y)G(x,y)dy.

Q

@ This formulation encodes the lateral boundary conditions through £~
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Exnstence, Uniqueness and Boundedness of solutions

Basic theory: existence, uniqueness and boundedness (in one page)
Ou=—-Lu", in (0, +00) x Q2
(CDP) u(0,x) = uo(x), inQ
u(t,x) =0, on the lateral boundary.

We can formulate a “dual problem”, using the inverse £~ as follows
U = —u", where Ut,x) == L u(t, )] (x) = / u(t,y)G(x,y)dy.
Q
@ This formulation encodes the lateral boundary conditions through £~

@ Define the Weak Dual Solutions (WDS), a new concept compatible with more
standard solutions: very weak, weak (energy), mild, strong [...]
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Exnstence, Uniqueness and Boundedness of solutions

Basic theory: existence, uniqueness and boundedness (in one page)
Ou=—-Lu", in (0, +00) x Q2
(CDP) u(0,x) = uo(x), inQ
u(t,x) =0, on the lateral boundary.

We can formulate a “dual problem”, using the inverse £~ as follows
U = —u", where Ut,x) == L u(t, )] (x) = / u(t,y)G(x,y)dy.
Q
@ This formulation encodes the lateral boundary conditions through £~

@ Define the Weak Dual Solutions (WDS), a new concept compatible with more
standard solutions: very weak, weak (energy), mild, strong [...]

@ Prove Existence and Uniqueness of nonnegative WDS with 0 < ug € Lfi,l ().
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Exnstence, Uniqueness and Boundedness of solutions

Basic theory: existence, uniqueness and boundedness (in one page)
Ou=—-Lu", in (0, +00) x Q2
(CDP) u(0,x) = uo(x), inQ
u(t,x) =0, on the lateral boundary.

We can formulate a “dual problem”, using the inverse £~ as follows
U = —u", where Ut,x) == L u(t, )] (x) = / u(t,y)G(x,y)dy.
Q
@ This formulation encodes the lateral boundary conditions through £~

@ Define the Weak Dual Solutions (WDS), a new concept compatible with more
standard solutions: very weak, weak (energy), mild, strong [...]

@ Prove Existence and Uniqueness of nonnegative WDS with 0 < ug € Lfi,l ().

@ Prove a number of new pointwise estimates that provide L° bounds:
Absolute bounds: (k below does NOT depend on ug)

__L
u(t, )| < lu(t, ) [lLee (@) < F1 7T,
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Exnstence, Uniqueness and Boundedness of solutions

Basic theory: existence, uniqueness and boundedness (in one page)
Ou=—-Lu", in (0, +00) x Q2
(CDP) u(0,x) = uo(x), inQ
u(t,x) =0, on the lateral boundary.

We can formulate a “dual problem”, using the inverse £~ as follows
U = —u", where Ut,x) == L u(t, )] (x) = / u(t,y)G(x,y)dy.
Q
@ This formulation encodes the lateral boundary conditions through £~

@ Define the Weak Dual Solutions (WDS), a new concept compatible with more
standard solutions: very weak, weak (energy), mild, strong [...]

@ Prove Existence and Uniqueness of nonnegative WDS with 0 < ug € Lfi,l ().
@ Prove a number of new pointwise estimates that provide L° bounds:

Absolute bounds: (k below does NOT depend on ug)

_ 1
u(t, )| < [lut, )lleoe @) < R =T,
Instantaneous Smoothing Effects:

R 259~ 259~
R Py P = 1
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Elhptlc VS Parabolic: Asymptotic Behaviour

Elliptic VS Parabolic: Asymptotic Behaviour as t — oo
Let S be the unique solution to the Elliptic Dirichlet Problem for £LS" = §

Theorem. (Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vdzquez)
Let u > 0 be any nonnegative WDS to the Cauchy-Dirichlet problem. Then,
unless u = 0,

L
sup [t u(t,x) — S(x)] —— 0.
xXEQ 11— 00
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Elhptlc VS Parabolic: Asymptotic Behaviour

Elliptic VS Parabolic: Asymptotic Behaviour as t — oo
Let S be the unique solution to the Elliptic Dirichlet Problem for £LS" = §

Theorem. (Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vdzquez)
Let u > 0 be any nonnegative WDS to the Cauchy-Dirichlet problem. Then,
unless u = 0,

sup tﬁu(t,x) —S(x)| —— 0.
xXEQ 11— 00

This result, gives a clear suggestion of what the boundary behaviour of para-
bolic solutions should be,

u(t,x) < U(t,x) = —

at least for large times, as it happens in the local case s = 1. Hence the
boundary behaviour shall be dictated by the behaviour of the solution to the
elliptic equation.

We shall see that this is not always the case.
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The Fractional PME 11

Sharp Boundary Behaviour

Positivity Estimates and Infinite Speed of Propagation
Global Harnack Principles
Asymptotic Behaviour

Anomalous Boundary Behaviour and Counterexamples

Some Numerics
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Pos1t1v1ty Estimates and Infinite Speed of Propagation

Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vdzquez)

Let 0 < s < 1and u > 0 be a weak dual solution to the (CDP) corresponding to
uo € Lip, (2). Then there exists a constant £, > 0, such that

T Q
u(t,%) > (mt ) dist(x, 00)7 forall > Oandall x € Q.
* ,m

Here 1. = K« Huo” ) and K Ky, K+ depend only on N, s, 7, m, co, and Q.

(Q)

(recall that v = 1 for SFL, v = s for the RFL and v = 2s — 1 for the CFL)
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Posmwty Estimates and Infinite Speed of Propagation

Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vdzquez)

Let 0 < s < 1and u > 0 be a weak dual solution to the (CDP) corresponding to
uo € Ly, (2). Then there exists a constant r,, > 0, such that

T Q
u(t,%) > (mt ) dist(x, 00)7 forall > Oandall x € Q.
* ,m

Here 1. = K« Huo” ) and K Ky, K+ depend only on N, s, 7, m, co, and Q.

(Q)

(recall that v = 1 for SFL, v = s for the RFL and v = 2s — 1 for the CFL)
o Note that, for ¢ > ., the dependence on the initial data disappears
u(t,x) > K,dist(x, ('99)'Yt_ﬁ Vi > t..

(like in the local case s = 1)
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Posmwty Estimates and Infinite Speed of Propagation

Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vdzquez)

Let 0 < s < 1and u > 0 be a weak dual solution to the (CDP) corresponding to
uo € Ly, (2). Then there exists a constant r,, > 0, such that

T Q
u(t,%) > (mt ) dist(x, 00)7 forall > Oandall x € Q.
* ,m

Here 1. = K« Huo” ) and K Ky, K+ depend only on N, s, 7, m, co, and Q.

(Q)

(recall that v = 1 for SFL, v = s for the RFL and v = 2s — 1 for the CFL)
o Note that, for ¢ > ., the dependence on the initial data disappears

u(t,x) > K,dist(x, (99)'Yt_ﬁ Vi > t..
(like in the local case s = 1)

e But also note that these estimates can not hold for small times when s = 1, by the
finite speed of propagation that holds in the local case...
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P051t1v1ty Estimates and Infinite Speed of Propagation

Universal lower bounds and Infinite speed of propagation.

Recall that #, = k. ||u0||;|(m(;zl)), and
2

forallz >0andallx € Q.

Ly

t\ " dist(x, 909)7
M(I,X)Zﬁo(l/\) dist(x, 992)7

1
fm—1

@ As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.
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P051t1v1ty Estimates and Infinite Speed of Propagation

Universal lower bounds and Infinite speed of propagation.

Recall that #, = k. ||u0||;|(m(;zl)), and
2

forallz >0andallx € Q.

Ly

t\ " dist(x, 909)7
M(I,X)Zﬁo(l/\) dist(x, 992)7

1
fm—1

@ As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

@ No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vazquez, Wolansky [...]
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P051t1v1ty Estimates and Infinite Speed of Propagation

Universal lower bounds and Infinite speed of propagation.

Recall that #.. = #. ||uo| mml)), and

t\ " dist(x, 909)7
) dist(x, 992)7 forall > Oandall x € €.

u(t,x) > Ky (1 A —

*

1
tm—T

@ As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

@ No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vazquez, Wolansky [...]

@ Qualitative version of infinite speed of propagation for the Cauchy problem on
RV, by De Pablo, Quiros, Rodriguez, Vazquez [Adv. Math. 2011, CPAM 2012]
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Universal lower bounds and Infinite speed of propagation.

Recall that 7. = K. ||uol|

(m—1)
LL (sz)’

and

u(t,x) > Ky (1 A —

*

)

"= dist(x, 09)7

1
tm—T

forallz >0andallx € Q.

@ As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

@ No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vazquez, Wolansky [...]

@ Qualitative version of infinite speed of propagation for the Cauchy problem on
RV, by De Pablo, Quiros, Rodriguez, Vazquez [Adv. Math. 2011, CPAM 2012]

@ Different from the so-called Caffarelli-Vazquez model (on RY) that has finite
speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso
Vazquez [CRAS 2014, NLTMA 2015, JDE 2015, ARMA 2019]
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P051t1v1ty Estimates and Infinite Speed of Propagation

Universal lower bounds and Infinite speed of propagation.

(m—1)

L, (@ and

Recall that 7. = K. ||uol|

£\ 7T dist(x, 99Q)
u(t,x)ZﬁO(l/\) dist(x, O forall7 > O and all x € Q.

* tm—T

@ As a consequence, of the above universal bounds for all times, we have proven
that all nonnegative solutions have infinite speed of propagation.

@ No free boundaries when s < 1, contrary to the “local” case s = 1,
cf. Barenblatt, Aronson, Caffarelli, Vazquez, Wolansky [...]

@ Qualitative version of infinite speed of propagation for the Cauchy problem on
RV, by De Pablo, Quiros, Rodriguez, Vazquez [Adv. Math. 2011, CPAM 2012]

@ Different from the so-called Caffarelli-Vazquez model (on RY) that has finite
speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso
Vazquez [CRAS 2014, NLTMA 2015, JDE 2015, ARMA 2019]

@ Question: Is this estimate sharp?
More precisely, is the power ~y of the distance to the boundary the better one?
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Global Harnack Principle I. Matching powers.

Global Harnack Principle I. The non-spectral case. Matching powers.

Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vizquez)

Let £ be either the RFL (v = s) or the CFL (v = 25 — 1). Let u > 0 be a weak
dual solution to the (CDP). Then, there exist constants £, & > 0, so that the following
inequality holds for all # > O and all x € Q:

T d = i &
. (1 A ti) dlst(x,laﬂ) < u(t,x) SEdlSt(x’ o0) .

1 1
fm—1 tm—1

(m l)

Where t. = r.[uol| and k, % depend only on N, 5, v, m, c1, kg, €.




()utlme of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour
0000000000000 0000 0000000 O0@00000000000

Global Harnack Principle I. Matching powers.

Global Harnack Principle I. The non-spectral case. Matching powers.

Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vizquez)

Let £ be either the RFL (v = s) or the CFL (v = 25 — 1). Let u > 0 be a weak
dual solution to the (CDP). Then, there exist constants £, & > 0, so that the following
inequality holds for all # > O and all x € Q:

. (1 A ti) dlst(x,laﬂ) < u(t,x) SEdlSt(x’ o0) .

1 1
fm—1 tm—1

(m l)

Where t. = r.[uol| and k, % depend only on N, 5, v, m, c1, kg, €.

@ For large times ¢ > . the estimates are independent on the initial datum.
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Global Harnack Principle I. Matching powers.

Global Harnack Principle I. The non-spectral case. Matching powers.

Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vizquez)

Let £ be either the RFL (v = s) or the CFL (v = 25 — 1). Let u > 0 be a weak
dual solution to the (CDP). Then, there exist constants £, & > 0, so that the following
inequality holds for all # > O and all x € Q:

. (1 A ti) dlst(x,laﬂ) < u(t,x) SEdlSt(x’ o0) .

1 1
fm—1 tm—1

(m l)

Where t. = r.[uol| and k, % depend only on N, 5, v, m, c1, kg, €.

@ For large times ¢ > . the estimates are independent on the initial datum.

@ Notice that this result does not apply for s = 1, is purely nonlocal.
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Global Harnack Principle I. Matching powers.

Global Harnack Principle I. The non-spectral case. Matching powers.

Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vizquez)

Let £ be either the RFL (v = s) or the CFL (v = 25 — 1). Let u > 0 be a weak
dual solution to the (CDP). Then, there exist constants £, & > 0, so that the following
inequality holds for all # > O and all x € Q:

. (1 A [i) dlst(x,la(l) < u(t,x) Sﬁdm(x’ o0) .

1 1
fm—1 tm—1

(m l)

Where t. = r.[uol| and k, % depend only on N, 5, v, m, c1, kg, €.

@ For large times ¢ > . the estimates are independent on the initial datum.
@ Notice that this result does not apply for s = 1, is purely nonlocal.

@ In the local case s = 1 the above result holds only for ¢ > t.
(finite speed of propagation)
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Consequences of GHP with matching powers

As a consequence of GHP with matching powers we get:
Theorem. (Sharp Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vdzquez)

Assume that a GHP with matching powers hold. Set U(z,x) := t_ﬁS(x). Then

1

there exists co > 0 such that, forall 1 > £y := co||uo|[,(m(;2)), we have
i

sup
xX€EQ

M(tvx) _ 1‘ < 2 to

Ut,) “m—1t+t’
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Consequences of GHP with matching powers

As a consequence of GHP with matching powers we get:
Theorem. (Sharp Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vdzquez)

Assume that a GHP with matching powers hold. Set U(z,x) := t_ﬁS(x). Then

1

there exists co > 0 such that, forall 1 > £y := coHuoH;(m(;z)), we have
i

sup
xX€EQ

M(t7x) _ 1‘ < 2 to

U(t,) “m—11n+t

4

This asymptotic result is sharp: check by considering u(f,x) = U(t + 1,x). For the
classical case £ = A, we recover the results of Aronson-Peletier (1981) and Vizquez
(2004) with a different proof.
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Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles I1. The Spectral case. Non-Matching powers.
In the case of the SFL, v = 1, and a new exponent enters the game:

) { 2sm }
o =min<g |, —
y(m—1)

Theorem. (GHP II) (M.B., A. Figalli and J. L. Védzquez)

Let £ be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding
toup € L}pl (€2). Then, there exist x, & > 0, such that for all # > 0 and x €

T di v
. <1 A ti) dlst(x,lc‘?Q) < ultx) <7 dist(x, 0Q) 7 '
* tm—1 fm—1
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Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles I1. The Spectral case. Non-Matching powers.
In the case of the SFL, v = 1, and a new exponent enters the game:

) { 2sm }
o =min<g |, —
y(m—1)

Theorem. (GHP II) (M.B., A. Figalli and J. L. Védzquez)

Let £ be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding
toup € L}I,1 (€2). Then, there exist x, & > 0, such that for all # > 0 and x €

(1 A )m T dist(x, 89) < ulx) < Edlst(x Q) .
* [mj fm—1

e This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.
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Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles I1. The Spectral case. Non-Matching powers.
In the case of the SFL, v = 1, and a new exponent enters the game:

) { 2sm }
o =min<g |, —
y(m—1)

Theorem. (GHP II) (M.B., A. Figalli and J. L. Védzquez)

Let £ be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding
toup € L}I,1 (€2). Then, there exist x, & > 0, such that for all # > 0 and x €

(1 A )m T dist(x, 89) < ulx) < Edlst(x Q) .

[mj tm—1

e This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.

e This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.
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Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles I1. The Spectral case. Non-Matching powers.
In the case of the SFL, v = 1, and a new exponent enters the game:

) { 2sm }
o =min<g |, —
Y(m—1)

Theorem. (GHP II) (M.B., A. Figalli and J. L. Védzquez)

Let £ be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding
toup € L}I,1 (€2). Then, there exist x, & > 0, such that for all # > 0 and x €

(1 A )m T dist(x, 89) < ulx) < Edlst(x Q) .

1
t/u—l fm—1

e This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.

e This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.

e This bound holds for all times and for a large class of operators.



()utlme of the talk Classical Porous Medium Equation The Fractional PME I: Basic theory Sharp Boundary Behaviour
0000000000000 0000 0000000 O000@000000000

Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles I1. The Spectral case. Non-Matching powers.
In the case of the SFL, v = 1, and a new exponent enters the game:

) { 2sm }
o =min<g |, —
Y(m—1)

Theorem. (GHP II) (M.B., A. Figalli and J. L. Védzquez)

Let £ be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding
toup € L}I,1 (€2). Then, there exist x, & > 0, such that for all # > 0 and x €

(1 A )m T dist(x, 89) < ulx) < Edlst(x Q) .

1
t/u—l fm—1

e This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.

e This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.
e This bound holds for all times and for a large class of operators.

o This is not sufficient to ensure Cy’ boundary regularity.
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Global Harnack Principle II. Non-Matching powers.

Global Harnack Principles I1. The Spectral case. Non-Matching powers.
In the case of the SFL, v = 1, and a new exponent enters the game:

) { 2sm }
o =min<g |, —
Y(m—1)

Theorem. (GHP II) (M.B., A. Figalli and J. L. Védzquez)

Let £ be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding
toup € L}I,1 (€2). Then, there exist x, & > 0, such that for all # > 0 and x €

(1 A )m T dist(x, 89) < ulx) < Edlst(x Q) .

1
t/u—l fm—1

e This is a universal bound: it holds for all nonlocal operators that we consider s < 1
and shows infinite speed of propagation in a quantitative way.

e This is sufficient to ensure interior regularity, under ‘minimal’ assumptions.
e This bound holds for all times and for a large class of operators.
o This is not sufficient to ensure Cy’ boundary regularity.

e Question: Can the estimate be improved to get matching powers also in this case?
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Anomalous Boundary Behaviour and Counterexamples

Anomalous boundary behaviour when o < 1.
The intriguing case o < 1 is where new and unexpected phenomena appear.
‘We consider the SFL, hence v = 1 from now on. Recall that

2sm 2sm 1 1

=—F—= = 1 0 - —
o Fm—1) m—1< 1.e <s<2 o

Solutions by separation of variables: the standard boundary behaviour?

Let S be a solution to the Elliptic Dirichlet problem for £S™ = ¢,,S. We can define
U(t,x) = S()c)tiﬁ where S =< ®7/".

which is a solution to the (CDP), which behaves like <I>‘17/ " at the boundary.
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Anomalous Boundary Behaviour and Counterexamples

Anomalous boundary behaviour when o < 1.
The intriguing case o < 1 is where new and unexpected phenomena appear.
‘We consider the SFL, hence v = 1 from now on. Recall that

2sm 2sm 1 1

=—F—= = 1 0 - —
o Fm—1) m—1< 1.e <s<2 o

Solutions by separation of variables: the standard boundary behaviour?

Let S be a solution to the Elliptic Dirichlet problem for £S™ = ¢,,S. We can define
U(t,x) = S()c)tiﬁ where S =< ®7/".

which is a solution to the (CDP), which behaves like <I>‘,7/ " at the boundary.

By comparison, we see that the same lower behaviour is shared ‘big’ solutions:

L S
up > €S implies u(r) > T
(e +1)
This behaviour seems to be sharp: we have shown matching upper bounds,
and also S represents the large time asymptotic behaviour:

lim ‘
11— o0

ﬂ,'ju(t)_SH =0 forall0<u €Lk ().
L
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Anomalous Boundary Behaviour and Counterexamples

Anomalous boundary behaviour when o < 1.
The intriguing case o < 1 is where new and unexpected phenomena appear.
‘We consider the SFL, hence v = 1 from now on. Recall that

2sm 2sm 1 1

=" = 1 0 55
o Fm—1) m—1< 1.e <s<2 m

Solutions by separation of variables: the standard boundary behaviour?

Let S be a solution to the Elliptic Dirichlet problem for £S™ = ¢,,S. We can define
U(t,x) = S()c)tiﬁ where S =< ®7/".

which is a solution to the (CDP), which behaves like <I>‘17/ " at the boundary.

By comparison, we see that the same lower behaviour is shared ‘big’ solutions:
S

(ql)—m + l)l/(m—l)
This behaviour seems to be sharp: we have shown matching upper bounds,
and also S represents the large time asymptotic behaviour:

up > €S  implies u(r) >

lim ‘
11— o0

But this is not happening for all solutions...

ﬂ,'ju(t)_SH =0 forall0 <u €L, ().
Lo
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when o < 1. We now show that, in general, we
cannot hope to prove that u(¢) is larger than dist'/”, but always smaller than dist®/".
Proposition. (Counterexample I) (M.B., A. Figalli and J. L. Vdzquez)

Let £ be the SFL (v = 1) and u > 0 be a weak dual solution to the (CDP).
Then, there exists a constant &, depending only N, s, y, m, and €2, such that

¢1/m
0 <up <co®, implies | u(t,x) < COR;T’SX) Vt>0andae.x € Q.
In particular, if ¢ < 1, then
t
() =0 for any ¢ > 0.

A By
When o = 1 and 2sm = v(m — 1), then

. u(t, x)
LS /m 7y =0
¥=02 &y (x)!/m (1 + |log 1 (x)])

for any ¢ > 0.
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when o < 1. We now show that, in general, we
cannot hope to prove that u(¢) is larger than dist'/”, but always smaller than dist®/".
Proposition. (Counterexample I) (M.B., A. Figalli and J. L. Vdzquez)

Let £ be the SFL (v = 1) and u > 0 be a weak dual solution to the (CDP).
Then, there exists a constant &, depending only N, s, y, m, and €2, such that

o 2"(x)
0 <up <co®, implies | u(t,x) < COR— 7 Vt>0andae.x € Q.
In particular, if ¢ < 1, then
t
() =0 for any ¢ > 0.

e By
When o = 1 and 2sm = v(m — 1), then

. u(t, x)
LS /m 7y =0
¥=02 &y (x)!/m (1 + |log 1 (x)])

for any ¢ > 0.

v

Idea: The proposition above could make one wonder whether or not the sharp general
lower bound could be actually given by f1>:/ ", asin the case o = 1.
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when o < 1. We now show that, in general, we
cannot hope to prove that u(¢) is larger than dist'/”, but always smaller than dist®/".
Proposition. (Counterexample I) (M.B., A. Figalli and J. L. Vdzquez)

Let £ be the SFL (v = 1) and u > 0 be a weak dual solution to the (CDP).
Then, there exists a constant &, depending only N, s, y, m, and €2, such that

¢1/m
0 <up <co®, implies | u(t,x) < COR;T’SX) Vt>0andae.x € Q.
In particular, if ¢ < 1, then
t
() =0 for any ¢ > 0.

A By
When o = 1 and 2sm = v(m — 1), then

. u(t, x)
LS /m 7y =0
¥=02 &y (x)!/m (1 + |log 1 (x)])

for any ¢ > 0.

v

Idea: The proposition above could make one wonder whether or not the sharp general
lower bound could be actually given by <I>:/ ", asin the case o = 1.

But again, this is not happening for all solutions...
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when o < 1.
We next show that the bound u(f) 2 @}/mt"”m’l) is false for o < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Védzquez)

Let (A1), (A2), and (K4) hold, and let u > 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum uy < co®; for some co > 0.
If there exist constants x, T, & > 0 such that

2
u(T,x) > k@ (x)  forae.xeQ,| thena>1— =,

Y

In particular, when o < 1, we have o > . > 7.

U
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when o < 1.
We next show that the bound u(r) 2> @}/mt"/“’”l) is false for o < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Védzquez)

Let (A1), (A2), and (K4) hold, and let # > 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum uy < co®; for some co > 0.
If there exist constants x, T, & > 0 such that

2
u(T,x) > s®F(x)  forae. x€Q,|thena >1— =

Y

In particular, when o < 1, we have o > . > 7.

U

Under mild assumptions on the operator (for example SFL-type), we can prove:
2s

-2 ~ [
0<uy<Ad, 7 =  u@) <A - Ve,

for small times 7 € [0, T4], where Ty := 1/(CA™"), for some C > 0.
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Anomalous Boundary Behaviour and Counterexamples

Different boundary behaviour when o < 1.
We next show that the bound u(r) 2> @}/mt"/“’”l) is false for o < 1.

Proposition. (Counterexample II) (M.B., A. Figalli and J. L. Védzquez)

Let (A1), (A2), and (K4) hold, and let # > 0 be a weak dual solution to the (CDP)
corresponding to a nonnegative initial datum uy < co®; for some co > 0.
If there exist constants x, T, & > 0 such that

2
u(T,x) > s®F(x)  forae. x€Q,|thena >1— =

Y

In particular, when o < 1, we have o > . > 7.

Under mild assumptions on the operator (for example SFL-type), we can prove:
2s

-2 ~ [
0<uy<Ad, 7 =  u@) <A - Ve,

for small times 7 € [0, T4], where Ty := 1/(CA™"), for some C > 0.
Recall that we have a universal lower bound

i)
u(t,x) > K (IAL> 11(x) forallr > Oandallx € Q.

* fm—1
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Numerics

Numerical Simulations™

* Graphics obtained by numerical methods contained in: N. Cusimano, F. Del Teso, L. Gerardo-
Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with
Dirichlet, Neumann, and Robin boundary conditions, SIAM Num. Anal. (2018)

Graphics and videos: courtesy of F. Del Teso (BCAM, Bilbao, ES)
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Numerics I. Matching

Numerical simulation for the SFL with parameters m = 2 and s = 1/2, hence o = 1.

U0 = V00N
T \

Xgxi<0.5)

// \\
/ \
L / \ j
[\
n / ///’ *\\\ \\ 4
/7 R
] L ’/",/’ """ e \ ]
L 4 + y”l/ - i . \\\\\ 4
P N
Left: the initial condition uy < Co®;

Right: solid line represents @i/ "

1
the dotted lines represent | #7—1 u(r)

attimeatt = landt =5

While u(t) appears to behave as ®; < dist(-, ) for very short times

1
already at r = 5 it exhibits the matching boundary behavior rm—T u(t) =< @i /m
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Numerics II. Matching VS Non-Matching

Compare o = 1 VS 0 < 1: same ug < CyPy, solutions with different parameters

m=4, 5=0.75

1
Left: 77=Tu(r) attimer =30 andr = 150;m =4,s =3/4,0 = 1.
Matching: u(r) behaves like ®; < dist(-, 992) for quite some time,
and only around ¢ = 150 it exhibits the matching boundary behavior u(z) =< <I>:/ "

1
Right: rm—Tu(r) attime t = 150 and 1 = 600; m = 4,5 = 1/5,0 = 8/15 < 1.
Non-matching: u(r) < @ even after long time.

Idea: maybe when o < 1 and uy < @y, we have u(r) = @, for all times...

Not True: there are cases when u(t) > <I>: =2 for large times...
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Numerics III. Non-Matching

Sharp Boundary Behaviour
00000000000e00

Non-matching when o < 1: same data up, withm =2 ands = 1/10,0 =2/5 < 1

In both pictures, | the solid line represents <I>172S (anomalous behaviour)

m=2, s=0.1

e . P Y N

Left: tm—Tu(r) at time t = 4 and r = 25.

u(t) < @, |for short times r = 4, then m
1
Right: m=Tu(r) at time r = 40 and 1 = 150.| u(r) > @,

Both non-matching always different behaviour from the asymptotic profile <I>‘17/ ",
In this case we show that if 1y (x) < Co®;(x) then for all # > 0

for intermediate times t = 25

for large times.

1
o) '
u(t,x) < Cy [ﬂ} and  tim 2 0 foranyr>o.
' =09 &) (x)
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Numerics III. Non-Matching

v

Muchas Gracias!!!

Thank You!!!




oooooooooooooooooooooooooooooooooooooo

The End

Muchas Gracias!!!

Thank You!!!
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