Matteo Bonforte Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco 28049 Madrid, Spain matteo.bonforte@uam.es http://verso.mat.uam.es/~matteo.bonforte #### Workshop in honor of Alessio Figalli's Doctor Honoris Causa at UPC Five talks and a Round Table with Prof. Alessio Figalli Facultat de Matematiques i Estadistica UNIVERSITAT POLITECNICA DE CATALUNYA Barcelona, Spain, November 21, 2019 - Introduction to the Parabolic Problem on Domains - The Classical Porous Medium Equation (PME) - A Brief Summary about the Dirichlet Problem for PME in few "Blackboards" - The Fractional PME I: Basic theory - Three Different Fractional Laplacians on Bounded Domains - Existence, Uniqueness and Boundedness - The Fractional PME II: Sharp Boundary Behaviour - Positivity Estimates and Infinite Speed of Propagation - Global Harnack Principles - Asymptotic Behaviour - Anomalous Boundary Behaviour and Counterexamples - Some Numerics # Introduction to the Parabolic Problem on Domains ## **Homogeneous Dirichlet Problem for** **Fractional Nonlinear Degenerate Diffusion Equations** $$\text{(HDP)} \qquad \left\{ \begin{array}{ll} u_t + \mathcal{L} \, F(u) = 0 \,, & \text{in } (0, + \infty) \times \Omega \\ u(0, x) = u_0(x) \,, & \text{in } \Omega \\ u(t, x) = 0 \,, & \text{on the lateral boundary.} \end{array} \right.$$ #### where: - $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \geq 1$. - The linear operator \mathcal{L} will be: - sub-Markovian operator - densely defined in $L^1(\Omega)$. - The most studied nonlinearity is $F(u) = |u|^{m-1}u$, with m > 1. - The homogeneous boundary condition is posed on the lateral boundary, ### **Homogeneous Dirichlet Problem for** ### **Fractional Nonlinear Degenerate Diffusion Equations** $$\text{(HDP)} \qquad \left\{ \begin{array}{ll} u_t + \mathcal{L} \, F(u) = 0 \,, & \text{ in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x) \,, & \text{ in } \Omega \\ u(t, x) = 0 \,, & \text{ on the lateral boundary.} \end{array} \right.$$ #### where: Outline of the talk - $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \geq 1$. - The linear operator \mathcal{L} will be: - sub-Markovian operator - densely defined in $L^1(\Omega)$. A wide class of linear operators fall in this class: The classical Laplacian and all fractional Laplacians on domains. - The most studied nonlinearity is $F(u) = |u|^{m-1}u$, with m > 1. We deal with Degenerate diffusion of Porous Medium type. More general classes of "degenerate" nonlinearities F are allowed - The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L} . ## Introduction to the Parabolic Problem on Domains ### **Homogeneous Dirichlet Problem for** **Fractional Nonlinear Degenerate Diffusion Equations** $$\text{(HDP)} \qquad \left\{ \begin{array}{ll} u_t + \mathcal{L} \, F(u) = 0 \,, & \text{ in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x) \,, & \text{ in } \Omega \\ u(t, x) = 0 \,, & \text{ on the lateral boundary.} \end{array} \right.$$ #### where: - $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \geq 1$. - The linear operator \mathcal{L} will be: - sub-Markovian operator - densely defined in L¹(Ω). A wide class of linear operators fall in this class: The classical Laplacian and all fractional Laplacians on domains. - The most studied nonlinearity is $F(u) = |u|^{m-1}u$, with m > 1. We deal with Degenerate diffusion of Porous Medium type. More general classes of "degenerate" nonlinearities *F* are allowed. - The homogeneous boundary condition is posed on the lateral boundary, # Introduction to the Parabolic Problem on Domains ### **Homogeneous Dirichlet Problem for** **Fractional Nonlinear Degenerate Diffusion Equations** $$\text{(HDP)} \qquad \left\{ \begin{array}{ll} u_t + \mathcal{L} \, F(u) = 0 \,, & \text{ in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x) \,, & \text{ in } \Omega \\ u(t, x) = 0 \,, & \text{ on the lateral boundary.} \end{array} \right.$$ ### where: - $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N \geq 1$. - The linear operator \mathcal{L} will be: - sub-Markovian operator - densely defined in $L^1(\Omega)$. A wide class of linear operators fall in this class: The classical Laplacian and all fractional Laplacians on domains. - The most studied nonlinearity is $F(u) = |u|^{m-1}u$, with m > 1. We deal with Degenerate diffusion of Porous Medium type. More general classes of "degenerate" nonlinearities *F* are allowed. - The homogeneous boundary condition is posed on the lateral boundary, which may take different forms, depending on the particular choice of the operator \mathcal{L} . Outline of the talk # **The Classical Porous Medium Equation (PME)** A Brief Summary about the Dirichlet Problem for PME in few "Blackboards" $$\begin{cases} u_t = \Delta u^m & \text{in } (0, +\infty) \times \Omega \\ u = 0 & \text{on } (0, +\infty) \times \partial \Omega & m > 1 \end{cases}$$ BENILAN BREZZI CATTARELLI DI EGMEDATIO EVANO TRIEDMAN KENIG VAZOUEZ CRANDALL DASKALD POVLOS PELETIER PIERRE GIANAZEA VESPRI Q = R" bounded domain. NITIAL TIMES (0) o<t< t (Baren blatt behaviour) o the support of ult) spreads from supplus) with finite speed (close to B(t,x)) o the support of ut does NOT TOUCH the boundary DD. BENILAN msi CAFFARELLI .. DIBENEDETTO EVANS FRIEDMAN KENIG VAZQUEZ (RANDALL DASKALOPOULOS ARONSON PELETIER PIERRE GIANAZZA VESPRI spreads from suppluo) with finite speed (close to B(t,x)) o the support of uto does NOT TOUCH the boundary D.D. · Free boundary: delicate issue (CAFFARELLI, MZQUEZ, WOLMSKI, KOCH ...) the solution storts to "inflate" from d(x, dr) m-1 << d(x, dr) m (m>1) (TRANSITION OF BOUNDARY BEHAVIOUR) ("forgetting uo") REACHING THE BOUNDARY. · Once the supplicits) touches the boundary of & , the solution storts to inflate. the behaviour at DR becomes the Elliptic one: $u(t,x) \approx \frac{d(x, \Delta \Omega)^{k_m}}{+ \frac{1}{k_m-1}}$ (TRANSITION OF BOUNDARY BEHAVIOUR) (e) t<t<t* REACHING THE BOUNDARY. ("forgetting uo") · Once the supplicity) touches the boundary of & , the solution storts to inflate. the behaviour at DIZ becomes the colliptic one: $u(t,x) \approx \frac{d(x, d\Omega)^{1/m}}{t^{1/m-1}}$ GLOBAL HARNACK PRINCIPLE: $C_0 = \frac{dist(x, dx)}{t^{\frac{2}{m-1}}} \leq u(t, x) \leq C_1 = \frac{dist(x, dx)}{t^{\frac{2}{m-1}}}$ Co $$\frac{\operatorname{dist}(x, \partial \Omega)^{V_{m}}}{\operatorname{t}^{V_{m-1}}} \leq \operatorname{ut}(x) \leq C_{1} \frac{\operatorname{dist}(x, \partial \Omega)^{V_{m}}}{\operatorname{t}^{V_{m-1}}}$$ $$C_{0}^{\prime} = \frac{S(x)}{t^{\frac{1}{2m-1}}} \leq u(t,x) \leq C_{1}^{\prime} = \frac{S(x)}{t^{\frac{1}{2m-1}}}$$ $$u(t,x) \times \frac{S(x)}{t^{\frac{1}{2m-1}}} = u(t,x)$$ (TRANSITION OF BOUNDARY BEHAVIOUR) (e) t<t<t* REACHING THE BOUNDARY. ("forgetting uo") · Once the supplication touches the boundary of & , the solution storts to inflate. the behaviour at DIZ becomes the colliptic one: $u(t,x) \approx \frac{d(x, dx)^{1/m}}{+ \frac{1}{m-1}}$ (*) t = t *: Positivity in all & (INTERMEDIATE TIMES, LARGE GLOBAL HARNACK PRINCIPLE. ASSOCIATED ELLIPTIC PROBLEM. $$-\Delta S^{m} = \frac{1}{m-1} \quad \text{and} \quad 22$$ (STATIONARY FOR RESIDED FLOW) $$C_0'$$ $\frac{S(x)}{t^2m_{-1}} \le u(t,x) \le C_1' \frac{S(x)}{t^2m_{-1}}$ $$u(t,x) \times \frac{S(x)}{t^{\frac{2m}{m-1}}} = U(t,x)$$ (e) t<t<t* (TRANSITION OF BOUNDARY BEHAVIOUR) REACHING THE BOUNDARY. ("forgetting us") Once the supplicits) touches the boundary of I the solution storts to inflate. the behaviour at DR becomes the colliptic one: $u(t,x) \approx \frac{d(x, dx_1)^{km}}{+^{km-1}}$ (*) t\(\frac{1}{2}\) testivity in all Q (INTERMEDIATE TIMES) GLOBAL HARNACK PRINCIPLE: Co $$\frac{\text{dist}(x, \partial x)^{1/m}}{\text{t}^{1/m-1}} \leq \text{ut}, x) \leq c_1 \frac{\text{dist}(x, \partial x)^{1/m}}{\text{t}^{1/m-1}}$$ A SSOCIATED SELECTION OF $\frac{1}{2}$ on $\frac{1}{2}$ $$C_0 = \frac{S(x)}{t^{\frac{1}{2m-1}}} \leq u(t,x) \leq C_1 = \frac{S(x)}{t^{\frac{1}{2m-1}}}$$ $$V \times dist(-\partial \Omega)$$ $$V \times dist(-\partial \Omega)$$ $$V = 0$$ dis (-\partial \Omega)$$ $$V \times dist(-\partial \Omega)$$ $$V \times dist(-\partial \Omega)$$ $$V \times dist(-\partial \Omega)$$ $v(t,x) = z^{\frac{1}{m-1}} u(t,x), t = log(t+1)$ #### 00000000000000000 A Brief Summary about the Dirichlet Problem for PME in few "Blackboards" () t < t < t * (TRANSITION OF BOUNDARY BEHAVIOUR) solution storts to inflate. the behaviour at DIZ becomes the Elliptic one: $$u(t,x) \approx \frac{d(x,\partial\Omega)^{t/m}}{t^{\frac{1}{m-1}}}$$ $u_{\tau} = \Delta u^{m}$ $u_{(\tau-o)} = u_{o} \underbrace{\begin{pmatrix} s_{AME} \\ \omega_{\tau} c_{AML} \end{pmatrix}}_{\left(t^{*}(t-o)\right)} = u_{o}.$ SLOW MOTION DYNAMICS: (LOGARUTHHIC TIME RESCAUNG) ASSOCIATED ELLIPTIC PROBLEM. $$ASSOCIATED ELLIPTIC PROBLEM.$$ $$S = 0 , on \partial \mathcal{R}$$ V× dist(2) $$\int -\Delta V = \frac{\rho}{1-\rho} \sqrt{\rho}$$ in Ω $$C_0'$$ $\frac{S(x)}{\sqrt{2}} \leq u(\frac{1}{2}x) \leq C_1'$ $\frac{1}{\sqrt{2}}$ 5 X dist(-,20) /m / V=0 solution storts to inflate. the behaviour at DIZ becomes the Escliptic one: $$u(t,x) \approx \frac{d(x,\partial\Omega)^{t/m}}{t^{\frac{1}{m-1}}}$$ 26 N(NI MOOE) $$\begin{cases} u_{\tau} = \Delta u^{m} \\ u(t-0) = u_{0} \end{cases} \begin{cases} s_{A} = \sum_{t=0}^{\infty} \left(\frac{s_{t}}{m} + \frac{\sigma_{t}}{m} \right) \\ v(t+0) = u_{0} \end{cases}$$ $$v(t,x) = \tau^{\frac{1}{m-1}} u(t,x), \quad t = \log(t+1)$$ SLOW MOTION DYNAMICS: (LOGARUTHMIC TIME RESCAUNG) (*) t2 tx: Positivity in all Q (INTERMEDIATE TIMES) (STATIONARY FOR RESIDED FLOW) ASSOCIATED ELLIPTIC PROBLEM. GLOBAL HARNACK PRINCIPLE. $C_0 = \frac{dist(x, \partial \Omega)^{\frac{1}{2}m}}{dist(x, \partial \Omega)^{\frac{1}{2}m}} \leq u(t, x) \leq C_1 = \frac{dist(x, \partial
\Omega)^{\frac{1}{2}m}}{dist(x, \partial \Omega)^{\frac{1}{2}m}} \leq C_0 \Omega)^{\frac{1}{2}$ $$\int_{-\Delta S^{m} = \frac{S}{m-1}}^{\Delta S^{m} = \frac{S}{m-1}} M S$$ Vydist(eds) J-DV = Por ins $$C_{0}' \frac{1}{2} \frac{1}{$$ SEPARATE VAILIABLE SOLUTION. () t < t < t * (TRANSITION OF BOUNDARY BEHAVIOUR) · Once the supp (unto) touches the boundary of & , the solution storts to inflate. the behaviour at DR becomes the Elliptic one: ehaviour at 012 become $$\frac{1}{2}$$ become $\frac{1}{2}$ $\frac{1}$ JE > (NI MOO E) SLOW MOTION DYNAMICS: $$||u_t = \Delta u^{m}|$$ $$||u_t$$ $$v(t,x) = \tau^{\frac{1}{m-1}} u(t,x), \quad t = \log(t+1)$$ (•) $t \to +\infty$ ASYMPTOTIC BEHAVIOUR $$\begin{array}{c} \tau^{\frac{1}{m-1}} u(t,x) - S(x) \\ \tau^{\frac{1}{m-1}} u(t,x) - S(x) \end{array}$$ $$\frac{|u(x,x)|}{|u(t,x)-1| \leq \frac{C}{4+C}} \frac{|v(t,x)|}{|v(t,x)|} - 1 \leq C e^{-t}$$ (STATIONARY for RESALED FLOW) (*) t2 tx: Positivity in all Q (INTERMEDIATE TIMES) ASSOCIATED ELLIPTIC PROBLEM. GLOBAL HARNACK PRINCIPLE. $$\begin{cases} -\Delta S^{m} = \frac{S}{m-1} & \text{in } JZ \\ S = 0 & \text{on } \partial SZ \end{cases}$$ Temple | Semilares Structure of the $u(t,x) \times \frac{S(x)}{1} = u(t,x)$ $C_0' = \frac{S(x)}{+ \frac{1}{2}m^{-1}} \le u(\frac{1}{x}) \le C_1' = \frac{S(x)}{+ \frac{1}{2}m^{-1}}$ SEPARATE VAILIABLE SOLUTION. RESCOUNG BACK. # A Brief Summary about the Dirichlet Problem for PME in few "Blackboards" $$= \Delta u^{m}$$ $$= 0) = u_{0} \left(\begin{array}{c} SAUE \\ WTEAU \\ B \cdot c \end{array} \right) \left(\begin{array}{c} V_{t} = \Delta v^{m} + \frac{U}{m-1} \\ V(t=0) = u_{0} \end{array} \right)$$ $$V(t,x) = C^{\frac{1}{m-1}} u(t,x) \quad t = log(t+1)$$ SLOW MOTTON DYNAMICS t= log(ϵ +1) $= \delta \alpha$) × dist(α , $\partial \Omega$) $= \delta \omega^{m} + \frac{\omega}{m-1}$ o U(t,x) / S(x) monotonically increases to S(x) S(x) Represents AN ABSOLUTE UPPER BOUND FOR ALL $$U(z,x) = \frac{S(x)}{z^{\frac{1}{4x-1}}}$$ $$U(z,x) = +\infty$$ SOLUTIONS!! "FRENDLY GIANT". (DANGERG-KENIG) $$v(t,x) = e^{\frac{1}{m-1}} u(t,x), \quad t = \log(t+1)$$ # SEPARATION OF MRIDBUT · v(t,x) 1 S(x) SOLUTIONS !! "FRIENDLY GIANT". RESCOUNG (DAHLBERG-KENIG) BACK. $$\Delta u^{m} \qquad (2) = \Delta v^{m} + \frac{\sigma}{2} \qquad (3) = 2 \sqrt{2}$$ $$\begin{cases} u_{\tau} = \Delta u^{m} \\ u(\tau = 0) = u_{0} \end{cases} \begin{cases} v_{t} = \Delta v^{m} + \frac{\sigma}{m-1} \\ v(t = 0) = u_{0} \end{cases}$$ SLOW MOTION DYNAMICS $$v(t,x) = z^{\frac{1}{m-1}}u(\xi,x), \quad t = \log(\xi+1)$$ $$B(t,x) \approx dist(x)$$ $$\int U(z,x) = \frac{S(x)}{z^{\frac{1}{4\pi i}}}$$ Say dist(x, DD) 1/m SIX) Represents AN ABSOLUTE UPPER BOUND FOR ALL SOLUTIONS! "FRIENDLY GIANT". (DAHLBERG-KENIG) CONVERGENCE IN RELATIVE ERROR WITH SHARP RATE. $$\left| \frac{u(\zeta,x)}{u(\zeta,x)} - 1 \right| \leq \frac{c}{4+\zeta}$$ or $\left| \frac{v(\xi,x)}{s(x)} - 1 \right| \leq c e^{-t}$ - Three Different Fractional Laplacians on Bounded Domains - Existence, Uniqueness and Boundedness of solutions ### **Homogeneous Dirichlet Problem for** **Fractional Nonlinear Degenerate Diffusion Equations** (HDP) $$\begin{cases} u_t + \mathcal{L} F(u) = 0, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ - We have seen what happens when $\mathcal{L} = -\Delta$ is the classical Laplacian - We now focus our attention to a particular scenario: - When $\mathcal{L} = (-\Delta)^s$, with $s \in (0,1)$ is a Fractional Laplacian: there are The Fractional PME I: Basic theory •000000 • When $F(u) = |u|^{m-1}u$, with m > 1 have the classical PME nonlinearity ## **Homogeneous Dirichlet Problem for** **Fractional Nonlinear Degenerate Diffusion Equations** (HDP) $$\begin{cases} u_t + \mathcal{L} F(u) = 0, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ • We have seen what happens when $\mathcal{L} = -\Delta$ is the classical Laplacian The Fractional PME I: Basic theory •000000 - We now focus our attention to a particular scenario: - When $\mathcal{L} = (-\Delta)^s$, with $s \in (0,1)$ is a Fractional Laplacian: there are three different choices of fractional Laplacian on bounded domains. - When $F(u) = |u|^{m-1}u$, with m > 1 have the classical PME nonlinearity # **Homogeneous Dirichlet Problem for** **Fractional Nonlinear Degenerate Diffusion Equations** (HDP) $$\begin{cases} u_t + \mathcal{L} F(u) = 0, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ - We have seen what happens when $\mathcal{L} = -\Delta$ is the classical Laplacian - We now focus our attention to a particular scenario: - When $\mathcal{L} = (-\Delta)^s$, with $s \in (0,1)$ is a Fractional Laplacian: there are three different choices of fractional Laplacian on bounded domains. The Fractional PME I: Basic theory •000000 • When $F(u) = |u|^{m-1}u$, with m > 1 have the classical PME nonlinearity # Reminder about the fractional Laplacian operator on \mathbb{R}^N We have several equivalent definitions for $(-\Delta_{\mathbb{R}^N})^s$: By means of Fourier Transform, $$((-\Delta_{\mathbb{R}^N})^s f)(\xi) = |\xi|^{2s} \hat{f}(\xi).$$ The Fractional PME I: Basic theory This formula can be used for positive and negative values of s. By means of an Hypersingular Kernel: $$(-\Delta_{\mathbb{R}^N})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz,$$ Spectral definition, in terms of the heat semigroup associated to the standard $$(-\Delta_{\mathbb{R}^N})^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta_{\mathbb{R}^N}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}$$ # Reminder about the fractional Laplacian operator on \mathbb{R}^N We have several equivalent definitions for $(-\Delta_{\mathbb{R}^N})^s$: By means of Fourier Transform, $$((-\Delta_{\mathbb{R}^N})^s f)\hat{}(\xi) = |\xi|^{2s} \hat{f}(\xi).$$ The Fractional PME I: Basic theory This formula can be used for positive and negative values of s. By means of an Hypersingular Kernel: if 0 < s < 1, we can use the representation $$(-\Delta_{\mathbb{R}^N})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz,$$ where $c_{N,s} > 0$ is a normalization constant. Spectral definition, in terms of the heat semigroup associated to the standard $$(-\Delta_{\mathbb{R}^N})^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta_{\mathbb{R}^N}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}$$ # Reminder about the fractional Laplacian operator on \mathbb{R}^N We have several equivalent definitions for $(-\Delta_{\mathbb{R}^N})^s$: By means of Fourier Transform, $$((-\Delta_{\mathbb{R}^N})^s f)\hat{}(\xi) = |\xi|^{2s} \hat{f}(\xi).$$ The Fractional PME I: Basic theory This formula can be used for positive and negative values of s. By means of an Hypersingular Kernel: if 0 < s < 1, we can use the representation $$(-\Delta_{\mathbb{R}^N})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz,$$ where $c_{N,s} > 0$ is a normalization constant. **Spectral definition**, in terms of the heat semigroup associated to the standard Laplacian operator: $$(-\Delta_{\mathbb{R}^N})^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta_{\mathbb{R}^N}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.$$ ### The Spectral Fractional Laplacian operator (SFL) $$(-\Delta_{\Omega})^{s}g(x) = \sum_{j=1}^{\infty} \lambda_{j}^{s} \, \hat{g}_{j} \, \phi_{j}(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{t\Delta_{\Omega}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.$$ - Δ_{Ω} is the classical Dirichlet Laplacian on the domain Ω - EIGENVALUES: $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_j \le \lambda_{j+1} \le \ldots$ and $\lambda_j \asymp j^{2/N}$. - EIGENFUNCTIONS: ϕ_j are the eigenfunctions of the classical Laplacian Δ_{Ω} : $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)$, and ϕ_j are as smooth as $\partial\Omega$ allows: $\partial\Omega\in C^k \Rightarrow \phi_j\in C^\infty(\Omega)\cap C^k(\overline{\Omega})$ $$\hat{g}_j = \int_{\Omega} g(x)\phi_j(x) \, \mathrm{d}x, \quad \text{with} \quad \|\phi_j\|_{\mathrm{L}^2(\Omega)} = 1.$$ The Green function of SFL satisfies, letting $\delta^{\gamma}(\,\cdot\,) := \operatorname{dist}(\,\cdot\,,\partial\Omega)$ $$(\mathrm{K4}) \quad \mathbb{G}(x,y) \asymp \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right) \,, \quad \mathrm{with} \, \boxed{\gamma = 1}$$ Lateral boundary conditions for the SFI $$u(t,x) = 0$$, in $(0,\infty) \times \partial \Omega$. # Three Different Fractional Laplacians on Bounded Domains ### The Spectral Fractional Laplacian operator (SFL) $$(-\Delta_{\Omega})^{s}g(x) = \sum_{j=1}^{\infty} \lambda_{j}^{s} \, \hat{g}_{j} \, \phi_{j}(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{t\Delta_{\Omega}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.$$ - Δ_{Ω} is the classical Dirichlet Laplacian on the domain Ω - EIGENVALUES: $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_j \le \lambda_{j+1} \le \ldots$ and $\lambda_j \asymp j^{2/N}$. - EIGENFUNCTIONS: ϕ_j are the eigenfunctions of the classical Laplacian Δ_{Ω} : $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)$, and ϕ_j are as smooth as $\partial\Omega$ allows: $\partial\Omega\in C^k \ \Rightarrow \ \phi_j\in C^\infty(\Omega)\cap C^k(\overline{\Omega})$ $$\hat{g}_j = \int_{\Omega} g(x)\phi_j(x) dx$$, with $\|\phi_j\|_{L^2(\Omega)} = 1$. The Green function of SFL satisfies, letting $\delta^{\gamma}(\,\cdot\,) :=
\operatorname{dist}(\,\cdot\,,\partial\Omega)$, $$(\text{K4}) \quad \mathbb{G}(x,y) \asymp \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right) \,, \quad \text{with } \boxed{\gamma = 1}$$ Lateral boundary conditions for the SFI $$u(t,x) = 0$$, in $(0,\infty) \times \partial \Omega$. ### The Spectral Fractional Laplacian operator (SFL) $$(-\Delta_{\Omega})^{s}g(x) = \sum_{j=1}^{\infty} \lambda_{j}^{s} \, \hat{g}_{j} \, \phi_{j}(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{t\Delta_{\Omega}} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.$$ - Δ_{Ω} is the classical Dirichlet Laplacian on the domain Ω - EIGENVALUES: $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_j \le \lambda_{j+1} \le \ldots$ and $\lambda_j \asymp j^{2/N}$. - EIGENFUNCTIONS: ϕ_j are the eigenfunctions of the classical Laplacian Δ_{Ω} : $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)$, and ϕ_i are as smooth as $\partial\Omega$ allows: $\partial\Omega\in C^k \Rightarrow \phi_i\in C^\infty(\Omega)\cap C^k(\overline{\Omega})$ $$\hat{g}_j = \int_{\Omega} g(x)\phi_j(x) \, \mathrm{d}x, \quad \text{with} \quad \|\phi_j\|_{\mathrm{L}^2(\Omega)} = 1.$$ The Green function of SFL satisfies, letting $\delta^{\gamma}(\cdot) := \operatorname{dist}(\cdot, \partial\Omega)$, (K4) $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right)$$, with $\gamma = 1$ # Lateral boundary conditions for the SFL $$u(t,x) = 0$$, in $(0,\infty) \times \partial \Omega$. Definition via the hypersingular kernel in \mathbb{R}^N , "restricted" to functions that are zero outside Ω . ### The (Restricted) Fractional Laplacian operator (RFL) $$(-\Delta_{|\Omega})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz, \quad \text{with supp}(g) \subseteq \overline{\Omega}.$$ where $s \in (0, 1)$ and $c_{N,s} > 0$ is a normalization constant. - $(-\Delta_{|\Omega})^s$ is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum: - EIGENVALUES: $0 < \overline{\lambda}_1 \le \overline{\lambda}_2 \le \ldots \le \overline{\lambda}_j \le \overline{\lambda}_{j+1} \le \ldots$ and $\overline{\lambda}_j \asymp j^{2s/N}$. Eigenvalues of the RFL are smaller than the ones of SFL: $\overline{\lambda}_j \le \lambda_j^s$ for all $j \in \mathbb{N}$. - EIGENFUNCTIONS: $\overline{\phi}_i \in C^s(\overline{\Omega}) \cap C^{\infty}(\Omega)$ (J. Serra X. Ros Oton), and $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial \Omega)^s$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial \Omega)^s$, The Green function of RFL satisfies, letting $\delta^{\gamma}(\,\cdot\,) := \mathrm{dist}(\,\cdot\,,\partial\Omega)$ $$(K4) \quad \mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right) , \quad \text{with } \boxed{\gamma = s}$$ Lateral boundary conditions for the RFI $$u(t,x) = 0$$, in $(0,\infty) \times (\mathbb{R}^N \setminus \Omega)$. **References.** (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005) Definition via the hypersingular kernel in \mathbb{R}^N , "restricted" to functions that are zero outside Ω . ## The (Restricted) Fractional Laplacian operator (RFL) $$(-\Delta_{|\Omega})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz, \quad \text{with supp}(g) \subseteq \overline{\Omega}.$$ where $s \in (0, 1)$ and $c_{N,s} > 0$ is a normalization constant. - $(-\Delta_{|\Omega})^s$ is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum: - EIGENVALUES: $0 < \overline{\lambda}_1 \le \overline{\lambda}_2 \le \ldots \le \overline{\lambda}_j \le \overline{\lambda}_{j+1} \le \ldots$ and $\overline{\lambda}_j \asymp j^{2s/N}$. Eigenvalues of the RFL are smaller than the ones of SFL: $\overline{\lambda}_j \le \lambda_j^s$ for all $j \in \mathbb{N}$. - EIGENFUNCTIONS: $\overline{\phi}_i \in C^s(\overline{\Omega}) \cap C^{\infty}(\Omega)$ (J. Serra X. Ros Oton), and $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)^s$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^s$, The Green function of RFL satisfies, letting $\delta^{\gamma}(\cdot) := \operatorname{dist}(\cdot, \partial\Omega)$, (K4) $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \quad \text{with } \underline{\gamma = s}$$ Lateral boundary conditions for the RFI $$u(t,x) = 0$$, in $(0,\infty) \times (\mathbb{R}^N \setminus \Omega)$. **References.** (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005) Definition via the hypersingular kernel in \mathbb{R}^N , "restricted" to functions that are zero outside Ω . ### The (Restricted) Fractional Laplacian operator (RFL) $$(-\Delta_{|\Omega})^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{D}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz, \quad \text{with supp}(g) \subseteq \overline{\Omega}.$$ where $s \in (0, 1)$ and $c_{N,s} > 0$ is a normalization constant. - $(-\Delta_{|\Omega})^s$ is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum: - EIGENVALUES: $0 < \overline{\lambda}_1 \le \overline{\lambda}_2 \le \ldots \le \overline{\lambda}_j \le \overline{\lambda}_{j+1} \le \ldots$ and $\overline{\lambda}_j \asymp j^{2s/N}$. Eigenvalues of the RFL are smaller than the ones of SFL: $\overline{\lambda}_j \le \lambda_j^s$ for all $j \in \mathbb{N}$. - EIGENFUNCTIONS: $\overline{\phi}_i \in C^s(\overline{\Omega}) \cap C^{\infty}(\Omega)$ (J. Serra X. Ros Oton), and $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)^s$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^s$, The Green function of RFL satisfies, letting $\delta^{\gamma}(\,\cdot\,) := \operatorname{dist}(\,\cdot\,,\partial\Omega)$, (K4) $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \quad \text{with } \gamma = s$$ Lateral boundary conditions for the RFL $$u(t,x) = 0$$, in $(0,\infty) \times (\mathbb{R}^N \setminus \Omega)$. **References.** (K4) Bounds proven by Bogdan, Grzywny, Jakubowski, Kulczycki, Ryznar (1997-2010). Eigenvalues: Blumental-Getoor (1959), Chen-Song (2005) Introduced in 2003 by Bogdan, Burdzy and Chen. ### Censored (Regional) Fractional Laplacians (CFL) $$\mathcal{L}f(x) = \text{P.V.} \int_{\Omega} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} \, \mathrm{d}y, \quad \text{with} \quad \frac{1}{2} < s < 1,$$ - It is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum (λ_j, ϕ_j) - Eigenfunctions: $\overline{\phi}_j \in C^{2s-1}(\overline{\Omega}) \cap C^{2s+\alpha}(\Omega)$ (MB, A.Figalli, J. L. Vázquez) $$\phi_1 \simeq \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$, The Green function $\mathbb{G}(x,y)$ satisfies, letting $\delta^{\gamma}(\cdot) := \operatorname{dist}(\cdot,\partial\Omega)$. $$\mathbb{G}(x,y) \asymp \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \text{ with } \boxed{\gamma = 2s-1}$$ #### Remarks - This is a third model of Dirichlet fractional Laplacian not equivalent to SFL nor to RFL. - Roughly speaking, $s \in (0, 1/2]$ corresponds to Neumann boundary conditions. Introduced in 2003 by Bogdan, Burdzy and Chen. ### Censored (Regional) Fractional Laplacians (CFL) $$\mathcal{L}f(x) = \text{P.V.} \int_{\Omega} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} \, \mathrm{d}y, \quad \text{with} \quad \frac{1}{2} < s < 1,$$ - It is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum (λ_j, ϕ_j) - Eigenfunctions: $\overline{\phi}_j \in C^{2s-1}(\overline{\Omega}) \cap C^{2s+\alpha}(\Omega)$ (MB, A.Figalli, J. L. Vázquez) $$\phi_1 \simeq \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$, The Green function $\mathbb{G}(x,y)$ satisfies, letting $\delta^{\gamma}(\,\cdot\,) := \mathrm{dist}(\,\cdot\,,\partial\Omega)$, $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \text{ with } \boxed{\gamma = 2s-1}$$ #### Remarks - This is a third model of Dirichlet fractional Laplacian not equivalent to SFL nor to RFL. - Roughly speaking, $s \in (0, 1/2]$ corresponds to Neumann boundary conditions. Introduced in 2003 by Bogdan, Burdzy and Chen. ### Censored (Regional) Fractional Laplacians (CFL) $$\mathcal{L}f(x) = \text{P.V.} \int_{\Omega} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} \, \mathrm{d}y, \quad \text{with} \quad \frac{1}{2} < s < 1,$$ - It is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum (λ_j, ϕ_j) - Eigenfunctions: $\overline{\phi}_j \in C^{2s-1}(\overline{\Omega}) \cap C^{2s+\alpha}(\Omega)$ (MB, A.Figalli, J. L. Vázquez) $$\phi_1 \simeq \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$, The Green function $\mathbb{G}(x, y)$ satisfies, letting $\delta^{\gamma}(\cdot) := \operatorname{dist}(\cdot, \partial \Omega)$, $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right)
\left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \text{ with } \boxed{\gamma = 2s-1}$$ #### Remarks. - This is a third model of Dirichlet fractional Laplacian not equivalent to SFL nor to RFL. - Roughly speaking, $s \in (0, 1/2]$ corresponds to Neumann boundary conditions. Introduced in 2003 by Bogdan, Burdzy and Chen. #### Censored (Regional) Fractional Laplacians (CFL) $$\mathcal{L}f(x) = \text{P.V.} \int_{\Omega} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} \, \mathrm{d}y, \quad \text{with} \quad \frac{1}{2} < s < 1,$$ - It is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum (λ_j, ϕ_j) - \bullet Eigenfunctions: $\overline{\phi}_{\it j} \in {\it C}^{2s-1}(\overline{\Omega}) \cap {\it C}^{2s+\alpha}(\Omega)$ (MB, A.Figalli, J. L. Vázquez) $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$, The Green function $\mathbb{G}(x, y)$ satisfies, letting $\delta^{\gamma}(\cdot) := \operatorname{dist}(\cdot, \partial\Omega)$, $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \text{ with } \boxed{\gamma = 2s-1}$$ #### Remarks. - This is a third model of Dirichlet fractional Laplacian not equivalent to SFL nor to RFL. - Roughly speaking, $s \in (0, 1/2]$ corresponds to Neumann boundary conditions. Introduced in 2003 by Bogdan, Burdzy and Chen. #### Censored (Regional) Fractional Laplacians (CFL) $$\mathcal{L}f(x) = \text{P.V.} \int_{\Omega} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} \, \mathrm{d}y, \quad \text{with} \quad \frac{1}{2} < s < 1,$$ - It is a self-adjoint operator on $L^2(\Omega)$ with a discrete spectrum (λ_j, ϕ_j) - \bullet Eigenfunctions: $\overline{\phi}_{\it j} \in {\it C}^{2s-1}(\overline{\Omega}) \cap {\it C}^{2s+\alpha}(\Omega)$ (MB, A.Figalli, J. L. Vázquez) $$\phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$$ and $|\phi_j| \lesssim \operatorname{dist}(\cdot, \partial\Omega)^{2s-1}$, The Green function $\mathbb{G}(x, y)$ satisfies, letting $\delta^{\gamma}(\cdot) := \operatorname{dist}(\cdot, \partial\Omega)$, $$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta^{\gamma}(x)}{|x-y|^{\gamma}} \wedge 1 \right) \left(\frac{\delta^{\gamma}(y)}{|x-y|^{\gamma}} \wedge 1 \right), \text{ with } \boxed{\gamma = 2s-1}$$ #### Remarks. - This is a third model of Dirichlet fractional Laplacian not equivalent to SFL nor to RFL. - Roughly speaking, $s \in (0, 1/2]$ corresponds to Neumann boundary conditions. # Existence, Uniqueness and Boundedness of solutions ## Basic theory: existence, uniqueness and boundedness (in one page) (CDP) $$\begin{cases} \partial_t u = -\hat{\mathcal{L}} u^m, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows $$\partial_t U = -u^m$$, where $U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\Omega} u(t,y) \mathbb{G}(x,y) \, \mathrm{d}y$. - This formulation encodes the lateral boundary conditions through \mathcal{L}^{-1} . $$|u(t,x)| \le ||u(t,\cdot)||_{L^{\infty}(\Omega)} \le \overline{\kappa} t^{-\frac{1}{m-1}}$$ $$|u(t,x)| \leq \|u(t)\|_{\mathsf{L}^{\infty}(\Omega)} \leq \frac{\overline{\kappa}}{t^{N\vartheta_{\gamma}}} \|u(t)\|_{\mathsf{L}^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{\gamma}} \leq \frac{\overline{\kappa}}{t^{N\vartheta_{\gamma}}} \|u_{0}\|_{\mathsf{L}^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{\gamma}}$$ Outline of the talk # Basic theory: existence, uniqueness and boundedness (in one page) (CDP) $$\begin{cases} \partial_t u = -\frac{\mathcal{L}}{\mathcal{L}} u^m, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows $$\partial_t U = -u^m$$, where $U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\Omega} u(t,y) \mathbb{G}(x,y) \, \mathrm{d}y$. - This formulation encodes the lateral boundary conditions through \mathcal{L}^{-1} . - Define the Weak Dual Solutions (WDS), a new concept compatible with more standard solutions: very weak, weak (energy), mild, strong [...] $$|u(t,x)| \le ||u(t,\cdot)||_{L^{\infty}(\Omega)} \le \overline{\kappa} t^{-\frac{1}{m-1}}$$ $$|u(t,x)| \leq \|u(t)\|_{\mathsf{L}^\infty(\Omega)} \leq \frac{\overline{\kappa}}{t^{N\vartheta_\gamma}} \|u(t)\|_{\mathsf{L}^1_{\Phi_1}(\Omega)}^{2s\vartheta_\gamma} \leq \frac{\overline{\kappa}}{t^{N\vartheta_\gamma}} \|u_0\|_{\mathsf{L}^1_{\Phi_1}(\Omega)}^{2s\vartheta_\gamma}$$ ## Basic theory: existence, uniqueness and boundedness (in one page) (CDP) $$\begin{cases} \partial_t u = -\hat{\mathcal{L}} u^m, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows $$\partial_t U = -u^m$$, where $U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\Omega} u(t,y) \mathbb{G}(x,y) \, \mathrm{d}y$. - This formulation encodes the lateral boundary conditions through \mathcal{L}^{-1} . - Define the Weak Dual Solutions (WDS), a new concept compatible with more standard solutions: very weak, weak (energy), mild, strong [...] - Prove Existence and Uniqueness of nonnegative WDS with $0 \le u_0 \in L^1_{\Phi_1}(\Omega)$. - Prove a number of new pointwise estimates that provide L^{∞} bounds: *Absolute bounds*: $(\overline{\kappa} \text{ below does NOT depend on } u_0)$ $$|u(t,x)| \le ||u(t,\cdot)||_{L^{\infty}(\Omega)} \le \overline{\kappa} t^{-\frac{1}{m-1}}$$ Instantaneous Smoothing Effects. $$|u(t,x)| \leq \|u(t)\|_{\mathsf{L}^{\infty}(\Omega)} \leq \frac{\overline{\kappa}}{t^{N\vartheta_{\gamma}}} \|u(t)\|_{\mathsf{L}^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{\gamma}} \leq \frac{\overline{\kappa}}{t^{N\vartheta_{\gamma}}} \|u_{0}\|_{\mathsf{L}^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{\gamma}}$$ ## Basic theory: existence, uniqueness and boundedness (in one page) 0000000 (CDP) $$\begin{cases} \partial_t u = -\frac{\mathcal{L}}{\mathcal{L}} u^m, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows $$\partial_t U = -u^m$$, where $U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\Omega} u(t,y) \mathbb{G}(x,y) \, \mathrm{d}y$. - This formulation encodes the lateral boundary conditions through \mathcal{L}^{-1} . - Define the Weak Dual Solutions (WDS), a new concept compatible with more standard solutions: very weak, weak (energy), mild, strong [...] - Prove Existence and Uniqueness of nonnegative WDS with $0 \le u_0 \in L^1_{\Phi_1}(\Omega)$. - Prove a number of new pointwise estimates that provide L^{∞} bounds: Absolute bounds: $(\overline{\kappa} \text{ below does NOT depend on } u_0)$ $$|u(t,x)| \leq ||u(t,\cdot)||_{L^{\infty}(\Omega)} \leq \overline{\kappa} t^{-\frac{1}{m-1}},$$ $$|u(t,x)| \leq \|u(t)\|_{\mathsf{L}^\infty(\Omega)} \leq \frac{\overline{\kappa}}{t^{N\vartheta_\gamma}} \|u(t)\|_{\mathsf{L}^1_{\Phi_1}(\Omega)}^{2s\vartheta_\gamma} \leq \frac{\overline{\kappa}}{t^{N\vartheta_\gamma}} \|u_0\|_{\mathsf{L}^1_{\Phi_1}(\Omega)}^{2s\vartheta_\gamma}$$ Outline of the talk ## Basic theory: existence, uniqueness and boundedness (in one page) (CDP) $$\begin{cases} \partial_t u = -\frac{\mathcal{L}}{\mathcal{L}} u^m, & \text{in } (0, +\infty) \times \Omega \\ u(0, x) = u_0(x), & \text{in } \Omega \\ u(t, x) = 0, & \text{on the lateral boundary.} \end{cases}$$ We can formulate a "dual problem", using the inverse \mathcal{L}^{-1} as follows $$\partial_t U = -u^m$$, where $U(t,x) := \mathcal{L}^{-1}[u(t,\cdot)](x) = \int_{\Omega} u(t,y) \mathbb{G}(x,y) \, \mathrm{d}y$. - This formulation encodes the lateral boundary conditions through \mathcal{L}^{-1} . - Define the Weak Dual Solutions (WDS), a new concept compatible with more standard solutions: very weak, weak (energy), mild, strong [...] - Prove Existence and Uniqueness of nonnegative WDS with $0 \le u_0 \in L^1_{\Phi_1}(\Omega)$. - Prove a number of new pointwise estimates that provide L^{∞} bounds: Absolute bounds: ($\overline{\kappa}$ below does NOT depend on u_0) $$|u(t,x)| \leq ||u(t,\cdot)||_{L^{\infty}(\Omega)} \leq \overline{\kappa} t^{-\frac{1}{m-1}},$$ Instantaneous Smoothing Effects: $$|u(t,x)| \leq ||u(t)||_{L^{\infty}(\Omega)} \leq \frac{\overline{\kappa}}{t^{N\vartheta_{\gamma}}} ||u(t)||_{L^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{\gamma}} \leq \frac{\overline{\kappa}}{t^{N\vartheta_{\gamma}}} ||u_{0}||_{L^{1}_{\Phi_{1}}(\Omega)}^{2s\vartheta_{\gamma}}$$ ## Elliptic VS Parabolic: Asymptotic Behaviour as $t \to \infty$ Let *S* be the unique solution to the Elliptic Dirichlet Problem for $\mathcal{L}S^m = S$. #### Theorem. (Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázquez) Let $u \ge 0$ be any nonnegative WDS to the Cauchy-Dirichlet problem. Then, unless $u \equiv 0$, $$\sup_{x\in\Omega}\left|t^{\frac{1}{m-1}}u(t,x)-S(x)\right|\xrightarrow[t\to\infty]{}0.$$ This result, gives a clear suggestion of what the boundary behaviour of parabolic solutions should be, $$u(t,x) \asymp \mathcal{U}(t,x) = \frac{S(x)}{t^{\frac{1}{m-1}}}$$ at least for large times, as it happens in the local case s = 1. Hence the boundary behaviour shall be dictated by the behaviour of the solution to the elliptic equation. We shall see that this is not always the case. ## Elliptic VS Parabolic: Asymptotic Behaviour as $t \to \infty$ Let *S* be the unique solution to the Elliptic Dirichlet Problem for $\mathcal{L}S^m = S$. #### Theorem. (Asymptotic behaviour)
(M.B., A. Figalli, Y. Sire, J. L. Vázquez) Let $u \ge 0$ be any nonnegative WDS to the Cauchy-Dirichlet problem. Then, unless $u \equiv 0$, $$\sup_{x\in\Omega}\left|t^{\frac{1}{m-1}}u(t,x)-S(x)\right|\xrightarrow[t\to\infty]{}0.$$ This result, gives a clear suggestion of what the boundary behaviour of parabolic solutions should be, $$u(t,x) \approx \mathcal{U}(t,x) = \frac{S(x)}{t^{\frac{1}{m-1}}}$$ at least for large times, as it happens in the local case s=1. Hence the boundary behaviour shall be dictated by the behaviour of the solution to the elliptic equation. We shall see that this is not always the case. - Positivity Estimates and Infinite Speed of Propagation - Global Harnack Principles - Asymptotic Behaviour - Anomalous Boundary Behaviour and Counterexamples - Some Numerics #### Theorem. (Universal lower bounds) Outline of the talk (M.B., A. Figalli and J. L. Vázquez) Let 0 < s < 1 and $u \ge 0$ be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then there exists a constant $\underline{\kappa}_0 > 0$, such that $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}}$$ for all $t > 0$ and all $x \in \Omega$. Here $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}_0, \kappa_*$ depend only on N, s, γ, m, c_0 , and Ω . (recall that $\gamma = 1$ for SFL, $\gamma = s$ for the RFL and $\gamma = 2s - 1$ for the CFL) • Note that, for $t \ge t_*$, the dependence on the initial data disappears $$u(t,x) > \kappa_0 \operatorname{dist}(x,\partial\Omega)^{\gamma} t^{-\frac{1}{m-1}} \qquad \forall t > t_*.$$ (like in the local case s = 1) \bullet But also note that these estimates can not hold for small times when s=1, by the finite speed of propagation that holds in the local case... #### Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vázquez) Let 0 < s < 1 and $u \ge 0$ be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then there exists a constant $\underline{\kappa}_0 > 0$, such that $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \quad \text{for all } t > 0 \text{ and all } x \in \Omega.$$ Here $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\infty}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}_0, \kappa_*$ depend only on N, s, γ, m, c_0 , and Ω . (recall that $\gamma = 1$ for SFL, $\gamma = s$ for the RFL and $\gamma = 2s - 1$ for the CFL) • Note that, for $t \ge t_*$, the dependence on the initial data disappears $$u(t,x) \ge \underline{\kappa}_0 \operatorname{dist}(x,\partial\Omega)^{\gamma} t^{-\frac{1}{m-1}} \qquad \forall t \ge t_*.$$ (like in the local case s = 1) • But also note that these estimates can not hold for small times when s = 1, by the Outline of the talk #### Theorem. (Universal lower bounds) (M.B., A. Figalli and J. L. Vázquez) Let 0 < s < 1 and $u \ge 0$ be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then there exists a constant $\underline{\kappa}_0 > 0$, such that $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \quad \text{for all } t > 0 \text{ and all } x \in \Omega.$$ Here $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\infty}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}_0, \kappa_*$ depend only on N, s, γ, m, c_0 , and Ω . (recall that $\gamma = 1$ for SFL, $\gamma = s$ for the RFL and $\gamma = 2s - 1$ for the CFL) • Note that, for $t \ge t_*$, the dependence on the initial data disappears $$u(t,x) \ge \underline{\kappa}_0 \operatorname{dist}(x,\partial\Omega)^{\gamma} t^{-\frac{1}{m-1}} \qquad \forall t \ge t_*.$$ (like in the local case s = 1) • But also note that these estimates can not hold for small times when s = 1, by the finite speed of propagation that holds in the local case... ## Universal lower bounds and Infinite speed of propagation. Recall that $$t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$$, and $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}}$$ - As a consequence, of the above universal bounds for all times, we have proven that all nonnegative solutions have **infinite speed of propagation**. - Qualitative version of infinite speed of propagation for the Cauchy problem on - Different from the so-called Caffarelli-Vázquez model (on \mathbb{R}^N) that has *finite* - Question: Is this estimate sharp? ## Universal lower bounds and Infinite speed of propagation. Recall that $$t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$$, and $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}}$$ - As a consequence, of the above universal bounds for all times, we have proven that all nonnegative solutions have **infinite speed of propagation**. - No free boundaries when s < 1, contrary to the "local" case s = 1, cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...] - Qualitative version of infinite speed of propagation for the Cauchy problem on - Different from the so-called Caffarelli-Vázquez model (on \mathbb{R}^N) that has *finite* - Question: Is this estimate sharp? ## **Positivity Estimates and Infinite Speed of Propagation** ## Universal lower bounds and Infinite speed of propagation. Recall that $$t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$$, and $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}}$$ - As a consequence, of the above universal bounds for all times, we have proven that all nonnegative solutions have infinite speed of propagation. - No free boundaries when s < 1, contrary to the "local" case s = 1, cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...] - Qualitative version of infinite speed of propagation for the Cauchy problem on \mathbb{R}^N , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012] - Different from the so-called Caffarelli-Vázquez model (on \mathbb{R}^N) that has *finite speed of propagation* [ARMA 2011, DCDS 2011] and also Stan, del Teso Vázquez [CRAS 2014, NLTMA 2015, JDE 2015, ARMA 2019] - Question: Is this estimate sharp? More precisely, is the power γ of the distance to the boundary the better one? ## Universal lower bounds and Infinite speed of propagation. Recall that $$t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$$, and $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}}$$ - As a consequence, of the above universal bounds for all times, we have proven that all nonnegative solutions have **infinite speed of propagation**. - No free boundaries when s < 1, contrary to the "local" case s = 1, cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...] - Qualitative version of infinite speed of propagation for the Cauchy problem on \mathbb{R}^N , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012] - Different from the so-called Caffarelli-Vázquez model (on \mathbb{R}^N) that has *finite* speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso Vázquez [CRAS 2014, NLTMA 2015, JDE 2015, ARMA 2019] - Question: Is this estimate sharp? # Positivity Estimates and Infinite Speed of Propagation # Universal lower bounds and Infinite speed of propagation. Recall that $$t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$$, and $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\gamma}}{t^{\frac{1}{m-1}}}$$ - As a consequence, of the above universal bounds for all times, we have proven that all nonnegative solutions have **infinite speed of propagation**. - No free boundaries when s < 1, contrary to the "local" case s = 1, cf. Barenblatt, Aronson, Caffarelli, Vázquez, Wolansky [...] - Qualitative version of infinite speed of propagation for the Cauchy problem on \mathbb{R}^N , by De Pablo, Quíros, Rodriguez, Vázquez [Adv. Math. 2011, CPAM 2012] - Different from the so-called Caffarelli-Vázquez model (on \mathbb{R}^N) that has *finite* speed of propagation [ARMA 2011, DCDS 2011] and also Stan, del Teso Vázquez [CRAS 2014, NLTMA 2015, JDE 2015, ARMA 2019] - Question: Is this estimate sharp? More precisely, is the power γ of the distance to the boundary the better one? #### Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vázquez) Let \mathcal{L} be either the RFL ($\gamma = s$) or the CFL ($\gamma = 2s - 1$). Let $u \ge 0$ be a weak dual solution to the (CDP). Then, there exist constants $\underline{\kappa}, \overline{\kappa} > 0$, so that the following inequality holds for all t > 0 and all $x \in \Omega$: $$\underline{\underline{\kappa}}\left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq \overline{\kappa} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}}.$$ Where $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}, \overline{\kappa}$ depend only on $N, s, \gamma, m, c_1, \underline{\kappa}_{\Omega}, \Omega$. - For large times $t \geq t_*$ the estimates are independent on the initial datum. - Notice that this result **does not apply for** s = 1, is purely nonlocal - In the local case s = 1 the above result holds only for $t \ge t_*$ (finite speed of propagation) ####
Theorem. (GHP I) (M.B., A. Figall, X. Ros Oton & J. L. Vázquez) Let \mathcal{L} be either the RFL ($\gamma = s$) or the CFL ($\gamma = 2s - 1$). Let $u \geq 0$ be a weak dual solution to the (CDP). Then, there exist constants $\underline{\kappa}, \overline{\kappa} > 0$, so that the following inequality holds for all t > 0 and all $x \in \Omega$: $$\underline{\underline{\kappa}}\left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}} \leq u(t,x) \leq \overline{\kappa} \frac{\operatorname{dist}(x,\partial\Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}}.$$ Where $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\mathrm{d..}}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}, \overline{\kappa}$ depend only on $N, s, \gamma, m, c_1, \underline{\kappa}_{\Omega}, \Omega$. - For large times $t > t_*$ the estimates are independent on the initial datum. - In the local case s = 1 the above result holds only for $t > t_*$ #### Theorem. (GHP I) Outline of the talk (M.B., A. Figall, X. Ros Oton & J. L. Vázquez) Let \mathcal{L} be either the RFL ($\gamma = s$) or the CFL ($\gamma = 2s - 1$). Let $u \geq 0$ be a weak dual solution to the (CDP). Then, there exist constants $\underline{\kappa}, \overline{\kappa} > 0$, so that the following inequality holds for all t > 0 and all $x \in \Omega$: $$\underline{\underline{\kappa}}\left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x,\partial\Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}} \leq u(t,x) \leq \overline{\kappa} \frac{\operatorname{dist}(x,\partial\Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}}.$$ Where $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\infty}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}, \overline{\kappa}$ depend only on $N, s, \gamma, m, c_1, \underline{\kappa}_{\Omega}, \Omega$. - For large times $t > t_*$ the estimates are independent on the initial datum. - Notice that this result **does not apply for** s = 1, is purely nonlocal. - In the local case s = 1 the above result holds only for $t \ge t_*$ #### Theorem. (GHP I) Outline of the talk (M.B., A. Figall, X. Ros Oton & J. L. Vázquez) Let \mathcal{L} be either the RFL ($\gamma = s$) or the CFL ($\gamma = 2s - 1$). Let $u \geq 0$ be a weak dual solution to the (CDP). Then, there exist constants $\underline{\kappa}, \overline{\kappa} > 0$, so that the following inequality holds for all t > 0 and all $x \in \Omega$: $$\underline{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq \overline{\kappa} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\gamma}{m}}}{t^{\frac{1}{m-1}}} .$$ Where $t_* = \kappa_* \|u_0\|_{\mathrm{L}^1_{\infty}(\Omega)}^{-(m-1)}$ and $\underline{\kappa}, \overline{\kappa}$ depend only on $N, s, \gamma, m, c_1, \underline{\kappa}_{\Omega}, \Omega$. - For large times $t > t_*$ the estimates are independent on the initial datum. - Notice that this result **does not apply for** s = 1, is purely nonlocal. - In the local case s = 1 the above result holds only for $t \ge t_*$ (finite speed of propagation) As a consequence of GHP with matching powers we get: **Theorem.** (Sharp Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázquez) Assume that a GHP with matching powers hold. Set $\mathcal{U}(t,x):=t^{-\frac{1}{m-1}}S(x)$. Then there exists $c_0>0$ such that, for all $t\geq t_0:=c_0\|u_0\|_{\mathrm{L}^1_{\Phi_1}(\Omega)}^{-(m-1)}$, we have $$\sup_{x \in \Omega} \left| \frac{u(t,x)}{\mathcal{U}(t,)} - 1 \right| \le \frac{2}{m-1} \frac{t_0}{t_0+t}.$$ This asymptotic result is sharp: check by considering $u(t,x) = \mathcal{U}(t+1,x)$. For the classical case $\mathcal{L} = \Delta$, we recover the results of Aronson-Peletier (1981) and Vázquez (2004) with a different proof. Outline of the talk As a consequence of GHP with matching powers we get: Theorem. (Sharp Asymptotic behaviour) (M.B., A. Figalli, Y. Sire, J. L. Vázguez) Assume that a GHP with matching powers hold. Set $\mathcal{U}(t,x):=t^{-\frac{1}{m-1}}S(x)$. Then there exists $c_0 > 0$ such that, for all $t \ge t_0 := c_0 \|u_0\|_{\mathbf{L}^1_{\Phi}(\Omega)}^{-(m-1)}$, we have $$\sup_{x \in \Omega} \left| \frac{u(t,x)}{\mathcal{U}(t,)} - 1 \right| \le \frac{2}{m-1} \frac{t_0}{t_0+t}.$$ This asymptotic result is sharp: check by considering $u(t,x) = \mathcal{U}(t+1,x)$. For the classical case $\mathcal{L} = \Delta$, we recover the results of Aronson-Peletier (1981) and Vázquez (2004) with a different proof. In the case of the SFL, $\gamma = 1$, and a new exponent enters the game: $$\sigma = \min\left\{1, \frac{2sm}{\gamma(m-1)}\right\}$$ #### Theorem. (GHP II) (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL, and let $u \geq 0$ be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist $\kappa, \overline{\kappa} > 0$, such that for all t > 0 and $x \in \Omega$ $$\frac{\kappa}{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq \kappa \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\sigma \gamma}{m}}}{t^{\frac{1}{m-1}}}.$$ - This is a universal bound; it holds for all nonlocal operators that we consider s < 1 - This is sufficient to ensure interior regularity, under 'minimal' assumptions. - This bound holds for all times and for a large class of operators. - This is not sufficient to ensure C_x^{α} boundary regularity. - Question: Can the estimate be improved to get matching powers also in this case? In the case of the SFL, $\gamma = 1$, and a new exponent enters the game: $$\sigma = \min\left\{1, \frac{2sm}{\gamma(m-1)}\right\}$$ #### Theorem. (GHP II) (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL, and let $u \geq 0$ be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist $\kappa, \overline{\kappa} > 0$, such that for all t > 0 and $x \in \Omega$ $$\underline{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \le u(t, x) \le \overline{\kappa} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\sigma \gamma}{m}}}{t^{\frac{1}{m-1}}} .$$ - This is a universal bound: it holds for all nonlocal operators that we consider s < 1and shows infinite speed of propagation in a quantitative way. - This is sufficient to ensure interior regularity, under 'minimal' assumptions. - This bound holds for all times and for a large class of operators. - This is not sufficient to ensure C_r^{α} boundary regularity. - Question: Can the estimate be improved to get matching powers also in this case? In the case of the SFL, $\gamma = 1$, and a new exponent enters the game: $$\sigma = \min\left\{1, \frac{2sm}{\gamma(m-1)}\right\}$$ #### Theorem. (GHP II) Outline of the talk (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL, and let $u \geq 0$ be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist $\kappa, \overline{\kappa} > 0$, such that for all t > 0 and $x \in \Omega$ $$\frac{\kappa}{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq \kappa \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\sigma \gamma}{m}}}{t^{\frac{1}{m-1}}}.$$ - This is a universal bound: it holds for all nonlocal operators that we consider s < 1and shows infinite speed of propagation in a quantitative way. - This is sufficient to ensure interior regularity, under 'minimal' assumptions. - This bound holds for all times and for a large class of operators. - This is not sufficient to ensure C_r^{α} boundary regularity. - Question: Can the estimate be improved to get matching powers also in this case? In the case of the SFL, $\gamma = 1$, and a new exponent enters the game: $$\sigma = \min\left\{1, \frac{2sm}{\gamma(m-1)}\right\}$$ #### Theorem. (GHP II) Outline of the talk (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist $\kappa, \overline{\kappa} > 0$, such that for all t > 0 and $x \in \Omega$ $$\frac{\kappa}{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq \kappa \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\sigma \gamma}{m}}}{t^{\frac{1}{m-1}}}.$$ - This is a universal bound: it holds for all nonlocal operators that we consider s < 1and shows infinite speed of propagation in a quantitative way. - This is sufficient to ensure interior regularity, under 'minimal' assumptions. - This bound holds for all times and for a large class of operators. - This is not sufficient to ensure C_r^{α} boundary regularity. - Question: Can the estimate be improved to get matching powers also in this case? In the case of the SFL, $\gamma = 1$, and a new exponent enters the game: $$\sigma = \min\left\{1, \frac{2sm}{\gamma(m-1)}\right\}$$ #### Theorem. (GHP II) (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist $\kappa, \overline{\kappa} > 0$, such that for all t > 0 and $x \in \Omega$ $$\underline{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \le u(t, x) \le \overline{\kappa} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\sigma \gamma}{m}}}{t^{\frac{1}{m-1}}} .$$ - This is a universal bound: it holds for all nonlocal operators that we consider s < 1and shows *infinite speed of
propagation* in a quantitative way. - This is sufficient to ensure interior regularity, under 'minimal' assumptions. - This bound holds for all times and for a large class of operators. - This is not sufficient to ensure C_x^{α} boundary regularity. - Question: Can the estimate be improved to get matching powers also in this case? In the case of the SFL, $\gamma = 1$, and a new exponent enters the game: $$\sigma = \min\left\{1, \frac{2sm}{\gamma(m-1)}\right\}$$ #### Theorem. (GHP II) Outline of the talk (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL, and let u > 0 be a weak dual solution to the (CDP) corresponding to $u_0 \in L^1_{\Phi_1}(\Omega)$. Then, there exist $\underline{\kappa}, \overline{\kappa} > 0$, such that for all t > 0 and $x \in \Omega$ $$\frac{\kappa}{\kappa} \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\operatorname{dist}(x, \partial \Omega)^{\gamma}}{t^{\frac{1}{m-1}}} \leq u(t, x) \leq \overline{\kappa} \frac{\operatorname{dist}(x, \partial \Omega)^{\frac{\sigma_{\gamma}}{m}}}{t^{\frac{1}{m-1}}}.$$ - This is a universal bound: it holds for all nonlocal operators that we consider s < 1and shows *infinite speed of propagation* in a quantitative way. - This is sufficient to ensure interior regularity, under 'minimal' assumptions. - This bound holds for all times and for a large class of operators. - This is not sufficient to ensure C_x^{α} boundary regularity. - Question: Can the estimate be improved to get matching powers also in this case? ## Anomalous boundary behaviour when $\sigma < 1$. The intriguing case $\sigma < 1$ is where new and unexpected phenomena appear. We consider the SFL, hence $\gamma = 1$ from now on. Recall that $$\sigma = \frac{2sm}{\gamma(m-1)} = \frac{2sm}{m-1} < 1 \qquad \text{i.e.} \qquad 0 < s < \frac{1}{2} - \frac{1}{2m} \,.$$ ### Solutions by separation of variables: the standard boundary behaviour? Let S be a solution to the Elliptic Dirichlet problem for $\mathcal{L}S^m = c_m S$. We can define $$\mathcal{U}(t,x) = S(x)t^{-\frac{1}{m-1}}$$ where $S \simeq \Phi_1^{\sigma/m}$. which is a solution to the (CDP), which behaves like $\Phi_1^{\sigma/m}$ at the boundary. $$u_0 \ge \epsilon_0 S$$ implies $u(t) \ge \frac{S}{\left(\epsilon_0^{1-m} + t\right)^{1/(m-1)}}$ $$\lim_{t \to \infty} \left\| t^{\frac{1}{m-1}} u(t) - S \right\|_{L^{\infty}} = 0 \quad \text{for all } 0 \le u_0 \in L^{1}_{\Phi_1}(\Omega).$$ #### Anomalous boundary behaviour when $\sigma < 1$. The intriguing case $\sigma < 1$ is where new and unexpected phenomena appear. We consider the SFL, hence $\gamma = 1$ from now on. Recall that $$\sigma = \frac{2sm}{\gamma(m-1)} = \frac{2sm}{m-1} < 1 \qquad \text{i.e.} \qquad 0 < s < \frac{1}{2} - \frac{1}{2m} \,.$$ ## Solutions by separation of variables: the standard boundary behaviour? Let S be a solution to the Elliptic Dirichlet problem for $\mathcal{L}S^m = c_m S$. We can define $$\mathcal{U}(t,x) = S(x)t^{-\frac{1}{m-1}}$$ where $S \asymp \Phi_1^{\sigma/m}$. which is a solution to the (CDP), which behaves like $\Phi_1^{\sigma/m}$ at the boundary. By comparison, we see that the same lower behaviour is shared 'big' solutions: $$u_0 \ge \epsilon_0 S$$ implies $u(t) \ge \frac{S}{\left(\epsilon_0^{1-m} + t\right)^{1/(m-1)}}$ This behaviour seems to be sharp: we have shown matching upper bounds, and also S represents the large time asymptotic behaviour: $$\lim_{t\to\infty} \left\| t^{\frac{1}{m-1}} u(t) - S \right\|_{L^{\infty}} = 0 \quad \text{for all } 0 \le u_0 \in \mathrm{L}^1_{\Phi_1}(\Omega) \,.$$ But this is not happening for all solutions... # **Anomalous Boundary Behaviour and Counterexamples** #### Anomalous boundary behaviour when $\sigma < 1$. The intriguing case $\sigma < 1$ is where new and unexpected phenomena appear. We consider the SFL, hence $\gamma = 1$ from now on. Recall that $$\sigma = \frac{2sm}{\gamma(m-1)} = \frac{2sm}{m-1} < 1$$ i.e. $0 < s < \frac{1}{2} - \frac{1}{2m}$. ### Solutions by separation of variables: the standard boundary behaviour? Let S be a solution to the Elliptic Dirichlet problem for $\mathcal{L}S^m = c_m S$. We can define $$\mathcal{U}(t,x) = S(x)t^{-\frac{1}{m-1}}$$ where $S \asymp \Phi_1^{\sigma/m}$. which is a solution to the (CDP), which behaves like $\Phi_1^{\sigma/m}$ at the boundary. By comparison, we see that the same lower behaviour is shared 'big' solutions: $$u_0 \ge \epsilon_0 S$$ implies $u(t) \ge \frac{S}{\left(\epsilon_0^{1-m} + t\right)^{1/(m-1)}}$ This behaviour seems to be sharp: we have shown matching upper bounds, and also S represents the large time asymptotic behaviour: $$\lim_{t\to\infty}\left\|t^{\frac{1}{m-1}}u(t)-S\right\|_{\mathrm{L}^\infty}=0\qquad\text{for all }0\leq u_0\in\mathrm{L}^1_{\Phi_1}(\Omega)\,.$$ But this is not happening for all solutions... # **Anomalous Boundary Behaviour and Counterexamples** **Different boundary behaviour when** $\sigma < 1$. We now show that, in general, we cannot hope to prove that u(t) is larger than dist^{1/m}, but always smaller than dist^{σ/m}. ## **Proposition.** (Counterexample I) (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL ($\gamma = 1$) and $u \ge 0$ be a weak dual solution to the (CDP). Then, there exists a constant $\hat{\kappa}$, depending only N, s, γ, m , and Ω , such that $$0 \le u_0 \le c_0 \Phi_1$$ implies $u(t,x) \le c_0 \hat{\kappa} \frac{\Phi_1^{1/m}(x)}{t^{1/m}}$ $\forall t > 0$ and a.e. $x \in \Omega$. In particular, if σ < 1, then $$\lim_{x \to \partial \Omega} \frac{u(t, x)}{\Phi_1(x)^{\sigma/m}} = 0 \quad \text{for any } t > 0.$$ When $\sigma = 1$ and $2sm = \gamma(m-1)$, then $$\lim_{x \to \partial \Omega} \frac{u(t, x)}{\Phi_1(x)^{1/m} (1 + |\log \Phi_1(x)|)^{1/(m-1)}} = 0 \qquad \text{for any } t > 0.$$ **Idea:** The proposition above could make one wonder whether or not the sharp general lower bound could be actually given by $\Phi_1^{1/m}$, as in the case $\sigma = 1$. But again, this is not happening for all solutions... **Different boundary behaviour when** $\sigma < 1$. We now show that, in general, we cannot hope to prove that u(t) is larger than dist^{1/m}, but always smaller than dist^{σ/m}. ## **Proposition.** (Counterexample I) (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL ($\gamma = 1$) and $u \ge 0$ be a weak dual solution to the (CDP). Then, there exists a constant $\hat{\kappa}$, depending only N, s, γ, m , and Ω , such that $$0 \le u_0 \le c_0 \Phi_1$$ implies $u(t,x) \le c_0 \hat{\kappa} \frac{\Phi_1^{1/m}(x)}{t^{1/m}}$ $\forall t > 0$ and a.e. $x \in \Omega$. In particular, if $\sigma < 1$, then $$\lim_{x \to \partial \Omega} \frac{u(t, x)}{\Phi_1(x)^{\sigma/m}} = 0 \quad \text{for any } t > 0.$$ When $\sigma = 1$ and $2sm = \gamma(m-1)$, then $$\lim_{x \to \partial \Omega} \frac{u(t, x)}{\Phi_1(x)^{1/m} (1 + |\log \Phi_1(x)|)^{1/(m-1)}} = 0 \qquad \text{for any } t > 0.$$ **Idea:** The proposition above could make one wonder whether or not the sharp general lower bound could be actually given by $\Phi_1^{1/m}$, as in the case $\sigma = 1$. **Different boundary behaviour when** $\sigma < 1$. We now show that, in general, we cannot hope to prove that u(t) is larger than dist^{1/m}, but always smaller than dist^{σ/m}. ## **Proposition.** (Counterexample I) Outline of the talk (M.B., A. Figalli and J. L. Vázquez) Let \mathcal{L} be the SFL ($\gamma = 1$) and $u \ge 0$ be a weak dual solution to the (CDP). Then, there exists a constant $\hat{\kappa}$, depending only N, s, γ, m , and Ω , such that $$0 \le u_0 \le c_0 \Phi_1$$ implies $u(t,x) \le c_0 \hat{\kappa} \frac{\Phi_1^{1/m}(x)}{t^{1/m}}$ $\forall t > 0$ and a.e. $x \in \Omega$. In particular, if $\sigma < 1$, then $$\lim_{x \to \partial \Omega} \frac{u(t, x)}{\Phi_1(x)^{\sigma/m}} = 0 \quad \text{for any } t > 0.$$ When $\sigma = 1$ and $2sm = \gamma(m-1)$, then $$\lim_{x \to \partial \Omega} \frac{u(t, x)}{\Phi_1(x)^{1/m} (1 + |\log \Phi_1(x)|)^{1/(m-1)}} = 0 \quad \text{for any } t > 0.$$ **Idea:** The proposition above could make one wonder whether or not the sharp general lower bound could be actually given by $\Phi_1^{1/m}$, as in the case $\sigma = 1$. But again, this is not happening for all solutions... # **Anomalous Boundary Behaviour and Counterexamples** ## Different boundary behaviour when $\sigma < 1$. We next show that the bound $u(t) \gtrsim \Phi_1^{1/m} t^{-1/(m-1)}$ is false for $\sigma < 1$. #### **Proposition.** (Counterexample II) (M.B., A. Figalli and J. L. Vázquez) Let (A1), (A2), and (K4) hold, and let $u \ge 0$ be a weak dual solution to the (CDP) corresponding to a nonnegative initial datum $u_0 \le c_0 \Phi_1$ for some $c_0 > 0$. If there exist constants $\underline{\kappa}$, T, $\alpha > 0$ such that $$u(T,x) \ge \underline{\kappa} \Phi_1^{\alpha}(x)$$ for a.e. $x \in \Omega$, then $\alpha \ge 1 - \frac{2s}{\gamma}$. In particular, when $\sigma < 1$, we have $\alpha > \frac{1}{m} > \frac{\sigma}{m}$. Under mild assumptions on the operator (for example SFL-type), we can prove $$0 \le u_0 \le A \Phi_1^{1 - \frac{2s}{\gamma}} \qquad \Rightarrow \qquad u(t) \le [A^{1-m} - \tilde{C}t]^{-(m-1)} \Phi_1^{1 - \frac{2s}{\gamma}}$$ for small times $t \in [0, T_A]$, where $T_A := 1/(\tilde{C}A^{m-1})$, for some $\tilde{C} > 0$. $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*} \right)^{\frac{m}{m-1}} \frac{\Phi_1(x)}{t_{m-1}}$$ for all t > 0 and all $x \in \Omega$ Outline of the talk # **Anomalous Boundary Behaviour and Counterexamples** ## Different boundary behaviour when $\sigma < 1$. We next show that the bound $u(t) \ge \Phi_1^{1/m} t^{-1/(m-1)}$ is false for $\sigma < 1$. #### **Proposition.** (Counterexample II) (M.B., A. Figalli and J. L. Vázquez) Let (A1), (A2), and (K4) hold, and let $u \ge 0$ be a weak dual solution to the (CDP) corresponding to a nonnegative initial datum $u_0 \le c_0 \Phi_1$ for some $c_0 >
0$. If there exist constants κ , T, $\alpha > 0$ such that $$u(T,x) \ge \underline{\kappa} \Phi_1^{\alpha}(x)$$ for a.e. $x \in \Omega$, then $\alpha \ge 1 - \frac{2s}{\gamma}$. In particular, when $\sigma < 1$, we have $\alpha > \frac{1}{m} > \frac{\sigma}{m}$. Under mild assumptions on the operator (for example SFL-type), we can prove: $$0 \le u_0 \le A \Phi_1^{1 - \frac{2s}{\gamma}} \qquad \Rightarrow \qquad u(t) \le [A^{1-m} - \tilde{C}t]^{-(m-1)} \Phi_1^{1 - \frac{2s}{\gamma}}$$ for small times $t \in [0, T_A]$, where $T_A := 1/(\tilde{C}A^{m-1})$, for some $\tilde{C} > 0$. $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\Phi_1(x)}{t^{\frac{1}{m-1}}}$$ # Anomalous Boundary Behaviour and Counterexamples ## Different boundary behaviour when $\sigma < 1$. We next show that the bound $u(t) \gtrsim \Phi_1^{1/m} t^{-1/(m-1)}$ is false for $\sigma < 1$. #### **Proposition.** (Counterexample II) (M.B., A. Figalli and J. L. Vázquez) Let (A1), (A2), and (K4) hold, and let $u \ge 0$ be a weak dual solution to the (CDP) corresponding to a nonnegative initial datum $u_0 \le c_0 \Phi_1$ for some $c_0 > 0$. If there exist constants $\underline{\kappa}$, T, $\alpha > 0$ such that $$u(T,x) \ge \underline{\kappa} \Phi_1^{\alpha}(x)$$ for a.e. $x \in \Omega$, then $\alpha \ge 1 - \frac{2s}{\gamma}$. In particular, when $\sigma < 1$, we have $\alpha > \frac{1}{m} > \frac{\sigma}{m}$. Under mild assumptions on the operator (for example SFL-type), we can prove: $$0 \le u_0 \le A \Phi_1^{1 - \frac{2s}{\gamma}} \qquad \Rightarrow \qquad u(t) \le [A^{1-m} - \tilde{C}t]^{-(m-1)} \Phi_1^{1 - \frac{2s}{\gamma}}$$ for small times $t \in [0, T_A]$, where $T_A := 1/(\tilde{C}A^{m-1})$, for some $\tilde{C} > 0$. Recall that we have a universal lower bound $$u(t,x) \ge \underline{\kappa}_0 \left(1 \wedge \frac{t}{t_*}\right)^{\frac{m}{m-1}} \frac{\Phi_1(x)}{t^{\frac{1}{m-1}}}$$ for all t > 0 and all $x \in \Omega$. # Numerical Simulations* ^{*} Graphics obtained by numerical methods contained in: N. Cusimano, F. Del Teso, L. Gerardo-Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions, SIAM Num. Anal. (2018) Graphics and videos: courtesy of F. Del Teso (BCAM, Bilbao, ES) Numerics I. Matching Outline of the talk **Numerical simulation for the SFL** with parameters m = 2 and s = 1/2, hence $\sigma = 1$. **Left:** the initial condition $u_0 < C_0 \Phi_1$ **Right:** solid line represents $\Phi_1^{1/m}$ the dotted lines represent $$\left| t^{\frac{1}{m-1}} u(t) \right|$$ at time at $t=1$ and $t=5$ While u(t) appears to behave as $\Phi_1 \simeq \operatorname{dist}(\cdot, \partial\Omega)$ for very short times already at t = 5 it exhibits the matching boundary behavior $t^{\frac{1}{m-1}}u(t) \approx \Phi_1^{1/m}$ Numerics II. Matching VS Non-Matching Outline of the talk #### Compare $\sigma = 1$ VS $\sigma < 1$: same $u_0 \le C_0 \Phi_1$, solutions with different parameters **Left:** $t^{\frac{1}{m-1}}u(t)$ at time t = 30 and t = 150; m = 4, s = 3/4, $\sigma = 1$. **Matching:** u(t) behaves like $\Phi_1 \asymp \operatorname{dist}(\cdot, \partial\Omega)$ for quite some time, and only around t = 150 it exhibits the matching boundary behavior $u(t) \asymp \Phi_1^{1/m}$ **Right:** $t^{\frac{1}{m-1}}u(t)$ at time t = 150 and t = 600; m = 4, s = 1/5, $\sigma = 8/15 < 1$. **Non-matching:** $u(t) \simeq \Phi_1$ even after long time. **Idea:** maybe when $\sigma < 1$ and $u_0 \lesssim \Phi_1$, we have $u(t) \simeq \Phi_1$ for all times... **Not True:** there are cases when $u(t) \gg \Phi_1^{1-2s}$ for large times... **Non-matching when** $\sigma < 1$: same data u_0 , with m = 2 and s = 1/10, $\sigma = 2/5 < 1$ In both pictures, the solid line represents Φ_1^{1-2s} (anomalous behaviour) **Left:** $t^{\frac{1}{m-1}}u(t)$ at time t=4 and t=25. $$u(t) \approx \Phi_1$$ for short times $t = 4$, then $u(t) \sim \Phi_1^{1-2s}$ for intermediate times $t = 25$ **Right:** $t^{\frac{1}{m-1}}u(t)$ at time t=40 and t=150. $u(t)\gg\Phi_1^{1-2s}$ for large times. **Both non-matching** always different behaviour from the asymptotic profile $\Phi_1^{\sigma/m}$. In this case we show that if $u_0(x) \le C_0 \Phi_1(x)$ then for all t > 0 $$u(t,x) \le C_1 \left[\frac{\Phi_1(x)}{t} \right]^{\frac{1}{m}}$$ and $\lim_{x \to \partial \Omega} \frac{u(t,x)}{\Phi_1(x)^{\frac{\sigma}{m}}} = 0$ for any $t > 0$. Outline of the talk # The End Muchas Gracias!!! Thank You!!! Outline of the talk # The End Muchas Gracias!!! Thank You!!! ## **References:** - [BV1] M. B., J. L. VÁZQUEZ, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. Arch. Rat. Mech. Anal. (2015). - [BV2] M. B., J. L. VÁZQUEZ, Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains Part I. Existence, Uniqueness and Upper Bounds Nonlin. Anal. TMA (2016). - [BSV] M. B., Y. SIRE, J. L. VÁZQUEZ, Existence, Uniqueness and Asymptotic behaviour for fractional porous medium equations on bounded domains. *Discr. Cont. Dyn. Sys.* (2015). - [BFR] M. B., A. FIGALLI, X. ROS-OTON, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. *Comm. Pure Appl. Math* (2017). - [BFV1] M. B., A. FIGALLI, J. L. VÁZQUEZ, Sharp boundary estimates and higher regularity for nonlocal porous medium-type equations in bounded domains. *Analysis & PDE* (2018) - [BFV2] M. B., A. FIGALLI, J. L. VÁZQUEZ, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. *Calc. Var. PDE* (2018).