Guia Docent

12/13

Facultat de Matemàtiques i Estadística

Curs E. Galois

Master in Advanced Mathematics and Mathematical Engineering

Facultat de Matemàtiques i Estadística

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Program

As reflected in its name, this master has a dual academic and professional orientation. On the academic side, it provides the skills and techniques needed in scientific research in general and, more specifically, in mathematical research.

On the professional side, the goal is to provide the students with an advanced background to work in interdisciplinary teams, in cooperation with engineers, physicists, biologists, economists, etc.

The master benefits both from the leading role of Spanish mathematical research at the European level and the technological environment of a technical university such as UPC–Barcelona Tech.

Structure

The master duration is 60 ECTS (European Credit transfer System) credits, and is intended to be completed in one academic year. This comprises 45 ECTS in courses and a master thesis (15 ECTS).

Master courses are offered in five broad fields: Algebra and Geometry; Discrete Mathematics and Algorithms; Modelling in Engineering and Biomedical Sciences; Differential Equations; Scientific Computing.

In addition, up to half of the course credits (i.e. 22.5 ECTS) may be taken from other master courses. This offers an excellent opportunity of specialisation in a given field according to one's preferences.

The official teaching language of this master is English.

Specific requirements

This master is addressed to students with good abstract reasoning, interest in problem solving, strong work habits and a liking for mathematics.

A scientific background is required, with basic mathematical foundations. For these reasons, a bachelor in mathematics, statistics, physics, engineering, economics or science is recommended. This list is non-exclusive, and all applications will be reviewed on an individual basis.

Career prospects

Some of the career prospects of master graduates are academic research (by pursuing a PhD in mathematics, sciences or engineering, for instance), mathematical modelling, finance, statistics, applied research (biomedical research centers, computer vision, etc.)

Tutoring of the Students

The initial tutoring is the responsibility of the Master's Academic Coordinator (jfranch@ma4upc.edu) and is performed mainly in the period prior to enrollment, often online. In addition, there is a welcome session just before courses start.

Because the master duration is 60 ECTS, students should start early to worry about their final master thesis (TFM). In this sense, beyond the support of the Academic Coordinator, they have access to an intranet to determine which TFMs are available. There, they will find information about the range of topics, detailed objectives, content and teaching responsibility. Thus, at the end of the first term, students should already have chosen their TFM. From this point, the TFM advisor assumes tutoring.

Additional information

Interested? Please check http://mamme.masters.upc.edu for more details and see leaflet.

Last update: 17/05/2012

34950 - CALG - Commutative Algebra

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics	
Teaching unit:		725 - MA I - Department of Applied Mathematics I	
Academic year:	2012		
Degree:	MASTER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Teaching unit Optative)		
ECTS credits:	7,5	Teaching languages: English	

Teaching staff

Coordinator:	FRANCESC D'ASSIS PLANAS VILANOVA
Others:	FRANCESC D'ASSIS PLANAS VILANOVA - A

Prior skills

Linear algebra, calculus, topology, analysis.

Requirements

The two first years of a degree in mathematics.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Teaching Classes, resolution of problems

34950 - CALG - Commutative Algebra

Learning objectives of the subject

Basic course in Commutative Algebra.

An introduction to rings, ideal, primary decomposition, noetherian rings, integral extensions, completions and dimension theory.

udy load			
Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Content

Rings and ideals	Learning time: 12h 45m Theory classes: 3h Self study : 9h 45m
Description:	

It covers rings, ideals, radicals, extensions, and contractions.

Modules	Learning time: 12h 45m
	Theory classes: 3h Self study : 9h 45m

Description: General properties of modules. Tensor product.

Rings and modules of fractions	Learning time: 18h
	Theory classes: 6h Self study : 12h
Description:	

Introduction to rings and modules of fractions

Primary decompostion	Learning time: 18h Theory classes: 6h Self study : 12h
Description:	

Classical primary theory. First theorems.

34950 - CALG - Commutative Algebra

Integral dependence	Learning time: 18h
	Theory classes: 6h Self study : 12h
Description	

Description:

Definition of integral dependence. Theorems of going-up and going-down.

: 6h h
21

Description:

Chain conditions on sets, modules, rings.

Learning time: 18h	
Theory classes: 6h Self study : 12h	
	Theory classes: 6h

Description:

They play a central role in Commutative Algebra and Algebraic Geometry.

Artin rings	Learning time: 18h
	Theory classes: 6h Self study : 12h

Description:

A good examples of noetherian rings. In some sense the simpliest.

Discrete valuation rings	Learning time: 18h Theory classes: 6h Self study : 12h
Description: The next case. Noetherian rings of dimension one.	

34950 - CALG - Commutative Algebra

Completions	Learning time: 18h
	Theory classes: 6h Self study : 12h

Description:

To deal with topologies, completions, filtrations and graded rings.

Dinmension theory	Learning time: 18h
	Theory classes: 6h Self study : 12h

Description:

A biref introduction to Hilbert functions and dimension theory.

Qualification system

Continuous assessment, a final exam (if necessary)

Bibliography

Basic:

Atiyah, Michael Francis; MacDonald, I. G. *Introduction to commutative algebra*. Reading: Addison-Wesley, 1969. ISBN 0201407515.

Reid, Miles. Undergraduate commutative algebra. Cambridge: Cambridge University Press, 1995. ISBN 0521452554.

Eisenbud, David. *Commutative algebra : with a view toward algebraic geometry*. Corrected 2nd. printing. New York: Springer-Verlag, 1996. ISBN 0387942696.

Kunz, Ernst. Introduction to commutative algebra and algebraic geometry. Boston: Birkhäuser, ISBN 3764330651.

Matsumura, Hideyuki. *Commutative ring theory*. Cambridge: Cambridge University Press, ISBN 0521259169.

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics		
Teaching unit:		727 - MA III - Department of Applied Mathematics III 743 - MA IV - Department of Applied Mathematics IV		
Academic year:	2012			
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)		
ECTS credits:	7,5	Teaching languages: English		

Teaching staff

Coordinator: ENRIC VENTURA CAPELL

Others:

ENRIC VENTURA CAPELL - A

Prior skills

The concept of group and subgroup, and the concept of homomorphism. Basic algebraic properties, binary operations, their properties. Equivalence relations and related set-theoretic properties.

Requirements

The basic algebra courses from the degree in mathematics.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Classes follow the traditional structure of lecture by the professor, together with the assignment of problems and exercises for the students to solve and present, either in written or in oral form.

Learning objectives of the subject

The main goal is to introduce the student into the basic ideas and techniques of non-commutative algebra, to the extend of being able to enroll into some initial research project in the area, if there is interest to do so.

Non-commutative algebra plays a significant role in the research panorama in mathematics today, but is underrepresented along the curriculum at the FME degree in mathematics. The main goal of the present topic is to fill this gap offering to the student a general but consistent introduction into the topic.

We'll center our attention towards the so-called "Geometric Group Theory", a relatively young and very active research area. This election is done because it allows to go, within a full semester, from the basics of the theory to the description, with a good level of details and context, of some open problems that are currently being object of active research today.

St	udy load			
	Total learning time: 187h 30m	Theory classes:	60h	32.00%
		Self study:	127h 30m	68.00%

Content

Generalities about infinite groups	Learning time: 47h Theory classes: 15h Self study : 32h
Description: The free group: basic definitions. Presentations: generators and relations. Short exact sequences, direct and semidirect products. Free products, amalagams, HNN extensions. Thompson's group as an example.	

The classical Dehn problems in group theory	Learning time: 25h Theory classes: 8h Self study : 17h
Description: Description of the three classical algorithmic problems in group the	neory: word, conjugacy and isomorphism

problems. Resolution of the word and conjugacy problems in simple cases: abelian, free, free-like constructions, residually finite, etc.

Examples of algorithmically unsolvable problems: word, membership, isomorphism problems, F_2 x F_2.

The free group	Learning time: 47h
	Theory classes: 15h Self study : 32h
Description:	

Stallings foldings and the lattice of subgroups of the free group. Membership, conjugacy, finite index, intersection of subgroups. Hall's theorem and residual properties of free groups.

Cayley graphs	Learning time: 31h
	Theory classes: 10h Self study : 21h

Description:

Cayley graph and the word metric in a group.

Dehn function, examples; characterization of the solvability of the word problem via Dehn functions. Growth of a group, examples. Gromov theorem.

Learning time: 37h 30m Theory classes: 12h Self study : 25h 30m

Description:

Definition of hyperbolic groups.

First properties, finite generation, centralizers.

Characterization of hyperbolic groups as those having linear Dehn function.

Qualification system

The student will have to develop a subject, first in term paper form, of about 15-20 pages, and also as a one to two hours lecture. The subject can be assigned by the teacher, or it can be picked by the student, among all topics in Geometric Group Theory of his interest.

Bibliography

Basic:

Brady, Noel; Riley, T.; Short, H. *The geometry of the word problem for finitely generated groups*. Basel: Birkhäuser, 2007. ISBN 978-3764379490.

Ghys, E.; Haefliger, A.; Verjovsky, A. *Group theory from a geometrical viewpoint : 26 March - 6 April 1990, ICTP, Trieste, Italy.* Singapore: World Scientific, 1991. ISBN 978-9810204426.

Lyndon, Roger C.; Schupp, Paul E. Combinatorial group theory. 2nd ed. Berlin: Springer, 2001. ISBN 978-3540411581.

Bogopolskij, Oleg Vladimirovic. *Introduction to group theory*. Zürich: European Mathematical Society, 2008. ISBN 9783037190418.

Complementary:

David B.A. Epstein [et al.]. Word processing in groups. Boston: Jones and Bartlett, 1992. ISBN 978-0867202441.

Ghys, E.; La Harpe, P. de. Sur les groupes hyperboliques d'après Mikhael Gromov. Boston: Birkhäuser, 1990. ISBN 978-0817635084.

34952 - AG - Algebraic Geometry

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		725 - MA I - Department of Applied Mathematics I
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff		
Coordinator:	JAUME AMOROS TORRENT	
Others:		
	JAUME AMOROS TORRENT	

Requirements

Basic abstract algebra, Topology and Differential Geometry Commutative Algebra

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

There will be master classes where the different subjects are introduced and discussed with the students, and also some problem sessions.

Learning objectives of the subject

The main objective of the course is to introduce the student to the Algebraic Geometry of affine and projective varieties

34952 - AG - Algebraic Geometry

over a field. The course will be based on many examples, as in Harris book in the references, stressing the geometric interest of the subject, using the commutattive algebra only as a resource. At the end, depending on the audience, there will be some lectures on schemes theory and their role in algebraic geometry.

tudy load			
Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Content

Chapter 1: Algebraic sets	Learning time: 18h
	Theory classes: 4h Self study : 14h

Description:

Algebraic sets. Hilbert's basis and nullstellensatz theorems. Zariski topology.

Chapter 2: Algebraic va	rieties	Learning time: 28h	
		Theory classes: 9h Self study : 19h	

Description:

Affine algebraic varieties, ring of regular functions. Subvarieties. Products of varieties, fibered products. Separation axiom.

Chapter 3: Projective varieties	Learning time: 28h
	Theory classes: 9h Self study : 19h

Description:

Projective and quasi-projective varieties. Zariski topology on projective varieties. Regular functions. Examples: hypersurfaces, grassmanians. Completeness of projective varieties.

Last update: 29/05/2012

34952 - AG - Algebraic Geometry

Chapter 4: Finite maps	Learning time: 28h
	Theory classes: 9h Self study : 19h

Description:

Basic properties. Noether normalization theorem. Zariski's main theorem. Proper maps. Normalization.

Chapter 5: Local theory	Learning time: 28h
	Theory classes: 9h Self study : 19h

Description:

Local ring. Tangent spaces. Nonsingular points. Nonsingularity and regularity. Smooth maps. Etale neighbourhoods.

Chapter 6: Dimension theory	Learning time: 28h
	Theory classes: 9h Self study : 19h

Description:

Dimension of affine varieties and of projective varieties. Dimension of the fibers of a morphism.

Chapter 7: Divisors, differentials and intersection theory	Learning time: 28h Theory classes: 9h Self study : 19h
Description:	

Divisors, intersectino theory of divisors. Bézout theorem. Differentials, the canonical divisor.

Qualification system

The qualification will be based on the exercises done as homework and the exposition of a subject developed by the student.

34952 - AG - Algebraic Geometry

Bibliography

Basic:

Harris, Joe. Algebraic geometry: a first course. New York: Springer Verlag, 1992. ISBN 0387977163.

Hartshorne, Robin. Algebraic geometry. New York: Springer Verlag, 1977. ISBN 0387902449.

Kempf, George. Algebraic varieties. Cambridge: Cambridge University Press, 1993. ISBN 0521426138.

Mumford, David. *Algebraic geometry I complex projective varieties*. Corrected 2nd. print. Berlin: Springer Verlag, 1995. ISBN 3540586571.

Shafarevich, Igor. Basic algebraic geometry. 2nd. rev. and expanded ed. Berlin: Springer Verlag, 1994. ISBN 3540548122.

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		726 - MA II - Department of Applied Mathematics II 743 - MA IV - Department of Applied Mathematics IV
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff

Coordinator: M. PAZ MORILLO BOSCH

Others:

SIMEON MICHAEL BALL - A JAVIER HERRANZ SOTOCA - A M. PAZ MORILLO BOSCH - A JORGE LUIS VILLAR SANTOS - A

Prior skills

Basic probability, basic number theory and linear algebra

Requirements

Undergraduate mathematics

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

The course is divided in two parts: codes and cryptography. Each part consists of 26 h of ordinary classes and 13 of supervised works. In these works some specialized topics will be addressed in deep.

Learning objectives of the subject

This course aims to give a solid understanding of the uses of mathematics in Information technologies and modern communications. The course focuses on the reliable and efficient transmission and storage of the information. Both the mathematical foundations and the description of the most importants cryptographic protocols and coding systems are given in the course.

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Content

Introduction to Coding theoryLearning time: 2h 24mTheory classes: 1h 36mSelf study : 0h 48m

Description:

The problem of communication. Information heory, Coding theory and Cryptographic theory

Information and Entropy	Learning time: 8h 55m Theory classes: 3h 37m Self study : 5h 18m
Description: Uncertainty or information. Entropy. Mutual information	

Source codes without memory	Learning time: 10h 55m
	Theory classes: 3h 37m Self study : 7h 18m

Description:

Codes. Average length. Huffman codes. Extensions of a source. Theory of an noiseless communication. Notes of compression.

Channel coding	Learning time: 10h 55m
	Theory classes: 3h 37m Self study : 7h 18m

Description:

Discrete channels without memory. Symmetric channels. Shannon's theorem.

Finite fiels	Learning time: 8h 55m
	Theory classes: 2h 37m Self study : 6h 18m

Description:

Irreductible polynomials over Zp. Construction of finite fields. The multiplicative group of a finite field.

Block codes	Learning time: 21h 55m
	Theory classes: 7h 37m Self study : 14h 18m

Description:

Hamming's distance. Detection and correction of errors. Bounds. Linear codes. Hamming codes. Reed-Muller codes. Hadamard codes

Cyclic codes	Learning time: 21h 55m
	Theory classes: 7h 37m Self study : 14h 18m

Description:

Cyclic codes. Generator and control matrices. Factorization of x^n-1 . Roots of a cyclic code. BCH codes. Primitive Reed-Solomon codes. Meggit's decoder.

Introduction to cryptography	Learning time: 4h 55m Theory classes: 2h 37m Self study : 2h 18m
Description: Symmetric key cryptography. Exemple AES.	

Theory classes: 4	m
Self study : 10h 1	

Description:

Encryption. Digital signature. Examples: RSA and ElGamal. Public key infrastructure.

Standard hard problems	Learning time: 14h 55m
	Theory classes: 4h 37m Self study : 10h 18m

Description:

Factorization, discrete logarithm over finite fiels and elliptic curves. Codes and lattices. Pairings over elliptic curves.

Analysis of the security of cryptographic	Learning time: 18h 55m
protocols	Theory classes: 6h 37m Self study : 12h 18m

Description:

Security models. Proofs by reduction. Heuristic security, random oracle model.

Other cryptographic protocols of interest	Learning time: 14h 55m Theory classes: 4h 37m Self study : 10h 18m
Description:	

Identification protocols. Commitments. Zero-knowledge proofs.

Distributed cryptography	Learning time: 18h 55m Theory classes: 6h 37m Self study : 12h 18m

Description:

Secret sharing schemes. Multiparty computation. Application to distributed encryption and digital signatures protocols.

Directed project	Learning time: 14h 06m
	Self study (distance learning): 14h 06m

Description:

CODING: Weight enumeration polynomial, perfect codes, error bursts, Reed-Muller codes (alternative version) and Kerdock codes. Symmetric codes over F3.

CRYPTOGRAPHY: Electronic voting, electronic commerce, management of private data, quantum cryptography.

Qualification system

Classroom problems: 2 points out of 10 Theory exam: 2.5 points out of 10 Supervised work (including oral presentation): 2 points out of 10 Final exam: 3.5 points out of 10

Regulations for carrying out activities

All the subjects are important. To pass the course it is required to fulfill all the items.

Bibliography

Basic:

Huffman, W. Cary; Pless, Vera. *Fundamentals of error-correcting codes*. Cambridge: Cambridge University Press, 2003. ISBN 0521782805.

Guruswami, Venkatesan. *List decoding of error-correcting codes : winning thesis of the 2002 ACM doctoral dissertation competition.* Berlin: Springer, 2004. ISBN 9783540240518.

Johnson, Sarah J. *Iterative error correction : turbo, low-density parity-check and repeat-accumulate codes.* Cambridge: Cambridge University Press, 2010. ISBN 9780521871488.

Justesen, Jorn; Hoholdt, Tom. *A Course in error-correcting codes*. Zürich: European Mathematical Society, 2004. ISBN 3037190019.

Xambó Descamps, Sebastián. Block error-correcting codes : a computational primer. Berlin: Springer, 2003. ISBN 3540003959.

Delfs, Hans; Knebl, Helmut. Introduction to cryptography. 2nd ed. Berlin: Springer, 2007. ISBN 9783540492436.

Katz, Jonathan; Lindell, Yehuda. *Introduction to modern cryptography : principles and protocols*. Boca Raton: Chapman & Hall, 2008. ISBN 9781584885511.

Complementary:

Welsh, Dominic. Codes and cryptography. Oxford: Oxford university Press, 1988. ISBN 0198532881.

Goldreich, Oded. Foundations of cryptography : basic tools. New York: Cambridge University Press, 2001. ISBN 0521791723.

Goldreich, Oded. *Foundations of cryptography : basic applications*. New York: Cambridge University Press, 2004. ISBN 9780521830843.

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		726 - MA II - Department of Applied Mathematics II 743 - MA IV - Department of Applied Mathematics IV
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). ning unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff

Coordinator: ORIOL SERRA ALBO

Others:

SIMEON MICHAEL BALL - A ANNA DE MIER VINUÉ - A ORIOL SERRA ALBO - A

Prior skills

Basic calculus and linear algebra. Notions of probability.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

There will be a lecture each week, followed by a problem session.

Learning objectives of the subject

To use algebraic, probabilistic and analytic methods for studying combinatorial structures. The main topics of study are: partially ordered sets, extremal set theory, finite geometries, matroids, Ramsey theory and enumerative combinatorics.

St	udy load				
	Total learning time: 187h 30m	Theory classes:	60h	32.00%	
		Self study:	127h 30m	68.00%	

Partially ordered sets	Learning time: 24h 40m
	Theory classes: 4h Practical classes: 4h Self study : 16h 40m

Sperner's theorem. LYM inequalities. Bollobás's theorem. Dilworth's theorem

Extremal set theory	Learning time: 24h 40m
	Theory classes: 4h Practical classes: 4h Self study : 16h 40m
Description:	

Theorems of Baranyai, Erdos-de Bruijn and Erdos-Ko-Rado

Linear algebra methods in combinatorics	Learning time: 18h 30m
	Theory classes: 3h Practical classes: 3h Self study : 12h 30m
Description	•

Description:

The polynomial method and applications. Fisher's theorem. Equiangular lines, sets with few differences

Finite geometries	Learning time: 18h 30m
	Theory classes: 3h Practical classes: 3h Self study : 12h 30m

Description:

q-anologs of extremal problems. Segre's theorem. Blocking sets, ovals and hyperovals.

Matroids	Learning time: 18h 30m
	Theory classes: 3h Practical classes: 3h Self study : 12h 30m

Description:

Axioms. Transversal matroids. Greedy algorithms. The Tutte polynomial

y classes: 3h cal classes: 3h tudy : 12h 30m

Description:

Permanents, transversals, hypergraph coloring. Monotone properties and threshold functions

Theory classes: 5h Practical classes: 5h Self study : 21h 40m

Description:

Theorems of Ramsey and Hales-Jewett. Theorems of Schur, Van der Waerden and Rado.

Enumerative combinatorics	Learning time: 32h 30m
	Theory classes: 5h Practical classes: 5h Self study : 22h 30m
Description:	

Symbolic and analytic methods. Symmetries and Pólya theory.

Qualification system

Grading will be based on the solution of exercises. Eventually there will a final examination.

Bibliography

Basic:

Alon, Noga; Spencer, Joel H.; Erdös, Paul. The probabilistic method. New York: Wiley, 1992. ISBN 0471535885.

Bollobás, Béla; Andrew Thomason (eds.). *Combinatorics, geometry, and probability : a tribute to Paul Erdos.* Cambridge: Cambridge University Press, 1997. ISBN 0521584728.

Lint, Jacobus Hendricus van; Wilson, R. M. *A Course in combinatorics*. 2nd ed. Cambridge: Cambridge University Press, 2001. ISBN 0521803403.

Flajolet P.; Sedgewick R. Analytic combinatorics. Cambridge: Cambridge University Press, 2009. ISBN 9780521898065.

Graham, Ronald L.; Rotschild, B.; Spencer, J. Ramsey theory. 2nd ed. New York: John Wiley & Sons, 1990. ISBN 0471500461.

Anderson, Ian. Combinatorics of finite sets. Mineola: Dover, 2002. ISBN 0486422577.

Lovász, László. Combinatorial problems and exercices. 2nd ed. Amsterdam: North-Holland, 1993. ISBN 044481504X.

Oxley, J. G. Matroid theory. Oxford: Oxford University Press, 1992. ISBN 0198535635.

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		726 - MA II - Department of Applied Mathematics II
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff

Others:

JULIAN PFEIFLE - A VERA SACRISTAN ADINOLFI - A

Prior skills

- Elementary combinatorics.

- Elementary graph theory.

- Elementary algorithmics.

- Elementary data structures.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Theory classes will be used to present and develop the contents of the course. Most of the topics will be presented by the instructors, but there can be some sessions devoted to students presentations.

There will be lists of problems, which will not contain solutions. Problems will be designed to help students deepen and mature their command of the concepts and techniques presented in class. Some problems will be solved in class, some will be left as homework. In the problem sessions, the goal will be to propose and analyze alternative strategies to solve each problem, and to show how the results presented in class are applied. Most of the problems solved in class will be presented by the students.

Learning objectives of the subject

Discrete, combinatorial and computational geometry are facets of a common body of knowledge that integrates fundamental elements from mathematics -mainly from algebra, topology and classical branches of geometry- with elements and problems from theoretical computer science and its applications.

The area focuses on the combinatorial and structural study of discrete geometric objects, as well as the design of algorithms to construct or analyze them. Among the objects studied, we can mention discrete sets of points, curves and manifolds, polytopes, convex bodies, packings, space decompositions, graphs, and geometric matroids.

By the end of the course, students should:

- Be able to recognize and formally express discrete geometric problems.
- Be able to discretize geometric problems, when possible.
- Be able to apply combinatorial techniques, as well as data structures and algorithms to discrete geometric problems.
- Be able to search the bibliography, and to understand the scientific literature on the subject.
- Be aware of the wide range of fields and problems to which discrete geometry results apply.
- Be aware of the most commonly used software in the field.

Study load						
Tota	l learning time: 187h 30m	Theory classes:	60h	32.00%		
		Self study:	127h 30m	68.00%		

Preliminaries	Learning time: 12h 30m
	Theory classes: 4h Self study : 8h 30m

Computational complexity. Data structures. Representation of geometric objects.

Convexity	Learning time: 19h
	Theory classes: 4h Practical classes: 2h Self study : 13h
Description	

Description:

Convex hull computation. Linear programming in low dimensions.

Decompositions and arrangements	Learning time: 31h
	Theory classes: 7h Practical classes: 3h Self study : 21h
	1

Description:

Subdivisions and triangulations of point sets and polygons. Visibility and motion planning. Duality. Special decompositions in dimension 2. The zone theorem. Incremental construction and randomized algorithms. Complexity. Levels and k-sets.

Proximity Structures	Learning time: 31h
	Theory classes: 7h Practical classes: 3h Self study : 21h

Description:

Proximity problems. Voronoi diagram, Delaunay triangulation. Shape reconstruction.

me: 37h
classes: 8h al classes: 4h idy : 25h
2

Description:

Geometry of three-dimensional manifolds. Phenomena in higher dimensions. Johnson-Lindenstrauss lemma and Compressed Sensing. Triangulations of products of polytopes. Lattices, tessellations and packings. Aperiodic tessellations and the method of sections.

Nonlinear discrete geometry	Learning time: 37h
	Theory classes: 8h Practical classes: 4h Self study : 25h
Description:	

Positive semidefinite quadratic forms and sphere packings; Voronoi reductions; Delaunay subdivisions. Splines regarded as toric varieties; splines with linear precision in reconstructing functions.

Applications	Learning time: 11h
	Theory classes: 4h Self study : 7h

Description:

GPS, GIS, structural rigidity and tensegrities; computational astrophysics, algorithmic chemistry; other applications.

Software	Learning time: 9h
	Laboratory classes: 2h Self study : 7h

Description:

STL, CGAL, polymake, ANN, curved spaces, etc.

Qualification system

In general, it will include an exam as well as class presentations. In the case of a small group, the exam may be replaced by personal work.

Nevertheless, the evaluation method may be adapted to the students' background, skills, and interests: programming problems or scientific research are considered as possible alternatives to the exam or the class presentations.

Bibliography

Basic:

Berg, Mark de; Cheong, Otfried; Kreveld, Marc van; Overmars, Mark. *Computational geometry: algorithms and applications*. 3rd ed. revised. Berlin: Springer, 2008. ISBN 9783540779735.

Boissonnat, J. D.; Yvinec, M. Algorithmic geometry. Cambridge: Cambridge University Press, 1998. ISBN 0521565294.

Bokowski, Jürgen. *Computational oriented matroids : equivalence classes of matrices within a natural framework*. Cambridge: Cambridge University Press, 2006. ISBN 9780521849302.

Conway, John Horton; Sloane, N. J. A. Sphere packings, lattices and groups. 3rd ed. Berlin: Springer, 1999. ISBN 0387985859.

Edelsbrunner, Herbert. Algorithms in combinatorial geometry. Berlín: Springer, 1987. ISBN 354013722X.

Matousek, Jirí. Lectures on discrete geometry. New York: Springer, 2002. ISBN 0387953736.

Pach, János; Agarwal, Pankaj K. Combinatorial geometry. New York: John Wiley & Sons, 1995. ISBN 0471588903.

Schurmann, Achill. *Computational geometry of positive definite quadratic forms : polyhedral reduction theories, algorithms, and applications.* Providence: AMS ULECT-48, 2009. ISBN 9780821847350.

Weeks, Jeffrey R. The shape of space. 2nd. ed. New York: M. Dekker, 2002. ISBN 0824707095.

Ziegler, Günter M. Lectures on polytopes. New York: Springer-Verlag, 1995. ISBN 038794365X.

Others resources:

Audiovisual material

Mathfilm festival 2008 [Enregistrament vídeo]: a collection of mathematical videos. Berlin : Springer, 2008

Videomath Festival at International Congress of Mathematicians, Berlin, Germany 1998 [Enregistrament vídeo] / edited and produced Hans Christian Hege, Konrad Polthier. [Berlin] : Springer, 1998

Not knot [Enregistrament vídeo] / directed by Charlie Gunn and Delle Maxwell ; [written by David Epstein ... [et al.]]. Minnesota : Geometry Center, University of Minnesota, 1991

Flatland [Enregistrament vídeo] : a journey of many dimensions / written by Seth Caplan, Dano Johnson, Jeffrey Travis ; directed by Jeffrey Travis, Dano Johnson. [S.I.] : Flat World Productions, cop. 2007

34957 - GT - Graph Theory

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		743 - MA IV - Department of Applied Mathematics IV
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff

Coordinator: ORIOL SERRA ALBO

Others:

MIGUEL ANGEL FIOL MORA - A ANNA LLADO SANCHEZ - A MARCOS NOY SERRANO - A ORIOL SERRA ALBO - A

Prior skills

Elementary Calculus and Linear Algebra; basic notions and abilities in combinatorics and probability.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Sessions of presentation of material alternate with sessions with student presentations of problems and specific topics. The active participation of students is a requirement for the evaluation of the course.

34957 - GT - Graph Theory

Learning objectives of the subject

Application of spectral techniques to the study of graphs. Application of the probabilsitic method. Properties of almost all graphs. Properties of Cayley and vertex symmetric graphs. Graphs on surafaces. Minors.

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%	
	Self study:	127h 30m	68.00%	

Content

Spectral techniques in Graph Theory

Description:

Adjacency and Laplacian matrix. Spectral properties. Cospectral graphs. Graph invariants and spectral properties: chromatic number, Cheeger constant, expansion properties, maxcut, bisection width. The matrix tree theorem. Random walks in graphs. Shannon capacity.

Symmetries in graphs

Minors and treewidth

Graphs on surfaces

Graph homomorphisms

Random graphs

34957 - GT - Graph Theory

Extremal Graph Theory	Learning time: 75h
	Theory classes: 24h 10m Practical classes: 24h 10m Assessment sessions: 3h Self study (distance learning): 23h 40m

Qualification system

The evaluation of the course is based on the weekly work on problems proposed in the presentation sessions. There will be a final comprehensive exam based on the problem sessions during the course.

Regulations for carrying out activities

The active participation in the course is a requirement for the evaluation of the final exam.

Bibliography

Basic:

Biggs, Norman L. *Algebraic graph theory.* 2nd ed. New York: Cambridge University Press, 1993. ISBN 0521458978.
Kolchin, V. F. *Random graphs.* Cambridge: Cambridge University Press, 1999. ISBN 0521440815.
Chung, Fan R. K. *Spectral Graph Theory.* Providence: American Mathematical Society, 1997. ISBN 0821803158.
Diestel, Reinhard. *Graph theory.* 3rd ed. Berlin: Springer, 2005. ISBN 3540261826.
Hell, Pavol; Nesetril, Jaroslav. *Graphs and homomorphisms.* Oxford: Oxford University Press, 2004. ISBN 0198528175.

34958 - MMPDE - Mathematical Modelling with Partial Differential Equations

Coordinating unit	:: 2	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:	-	725 - MA I - Department of Applied Mathematics I
Academic year:	2012	
Degree:		R IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). ing unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff Coordinator: JUAN DE LA CRUZ DE SOLÀ-MORALES RUBIÓ Others:

JUAN DE LA CRUZ DE SOLÀ-MORALES RUBIÓ - A

Prior skills

* Good knowledge of Calculus techniques, including integral theorems and basic Complex Variable methods.

* Elementary solution of PDEs and ODEs.

* Some experience on simple cases of mathematical modelling, especially in classical physics (gravitation, heat conduction, mechanics or electromagnetism).

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

34958 - MMPDE - Mathematical Modelling with Partial Differential Equations

Teaching methodology

The course is divided into two parts that will run in parallel. One part is a general overview of problems that can be modelled with PDEs and the other part focuses on a particular topic with industrial applications, namely Phase Transitions.

Lectures will contain the main contents of the course, but the students will also be asked to make presentations of additional material. Problem solution will also be asked.

Learning objectives of the subject

The course will provide a general overview on the use of partial differential equations (PDE) and boundary value problems to construct mathematical models of real phenomena. The course will be split into two parts, one section will be more theoretical, covering techniques and basic models. The second will be more applied, building on the theory whilst focusing on a specific, practically important, application of PDEs to phase transition (e.g. ice melting, water evaporating, solidification of steel). This class of problems is of particular interest because it falls into the important field of Moving Boundary Problems, where the solution domain is unknown and must be solved for at the same time as the governing PDEs.

By the end of the course the student should have acquired:

- * a knowledge of the problems that can be modelled with PDE's.
- * intuitive and physical interpretations of the terms that appear on PDE's.
- * a more detailed knowledge of the mathematical models of phase transition and moving boundary problems.
- * a more detailed knowledge of the mathematical techniques that are used in the solution of phase transitions problems.

St	tudy load				
	Total learning time: 187h 30m	Theory classes:	60h	32.00%	
		Self study:	127h 30m	68.00%	

tent	
1 Modelling with PDEs	Learning time: 93h 45m Theory classes: 30h Self study : 63h 45m
Description: - Heat conduction and diffusion. - Potentials in physics and technology. - Transients in continuous media - Populations dynamics. - Equations of distribution of particles.	

34958 - MMPDE - Mathematical Modelling with Partial Differential Equations

Theory classes: 30h Self study : 63h 45m	2 Phase Transitions	Learning time: 93h 45m
		Theory classes: 30h Self study : 63h 45m

Qualification system

Attendance to lectures, presentation of additional materials and problem solving will be the basis of a qualification up to a certain level. A higher mark will require an exam.

Bibliography

Basic:

Howison, Sam. *Practical applied mathematics : modelling, analysis, approximation*. New York: Cambridge University Press, 2005. ISBN 0521603692.

Friedman, A.; Litman, W. Industrial mathematics : a course in solving real-world problems. Philadelphia: SIAM, 1994. ISBN 0898713242.

Crank, John. Free and moving boundary problems. Oxford: Clarendon, 1984. ISBN 0198533705.

Hill, J.M. One-Dimensional Stefan Problems. New York: Wiley, 1987. ISBN 0470203889.

Ockendon, J.R. [et al.]. *Applied partial differential equations*. Revised ed. Oxford: Oxford University Press, 2003. ISBN 0198527713.

Complementary:

Crank, John. The Mathematics of diffusion. 2nd ed. Oxford: Clarendon Press, 1975. ISBN 0198534116.

Fowler, A.C. *Mathematical models in the applied sciences*. Cambridge: Cambridge University Press, 1997. ISBN 0521467039.

Tijonov, A.; Samarsky, A. *Ecuaciones de la física matemática*. 3ª ed. Moscú: Mir, 1983.

Last update: 17/05/2012

34959 - CM - Computational Mechanics

Coordinating unit	: 2	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:	-	727 - MA III - Department of Applied Mathematics III
Academic year:	2012	
Degree:		R IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). ng unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff						
Coordinator:	YONGXING SHEN					
Others:	YONGXING SHEN - A					

Prior skills

Basic knowledge of numerical methods Basic knowledge of partial differential equations

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Three elements will be combined: theory classes, where the main concepts will be presented; practical classes in the computer room, with emphasis on the computational aspects; lists of problems. Students will work on these problems individually or in pairs.

34959 - CM - Computational Mechanics

Learning objectives of the subject

The main objective is to provide a general perspective of the broad field of computational mechanics, covering both the modelling and the computational aspects. A broad range of problems is addressed: solids, fluids and fluid-solid interaction; linear and nonlinear models; static and dynamic problems. By the end of the course, the students should:

- Be able to choose the appropriate type of model for a specific simulation
- Be familiar with the mathematical objects (mainly tensors) used in computational mechanics
- Be aware of the different level of complexity of various problems (e.g. linear vs. nonlinear, static vs. dynamic).

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Content

ONTINUUM MECHANICS	Learning time: 31h 15m	
	Theory classes: 8h Practical classes: 2h Self study : 21h 15m	

Description:

Motivation. Definition of continuous media. Equation of motion: Eulerian and Lagrangian descriptions. Time derivatives. Strains: deformation gradient, Green and Euler-Almansi tensors; elongation and shear; small strains. Stresses: body and surface forces; Cauchy stress tensor. Balance equations: Reynolds transport theorem; mass balance; momentum balance. Constitutive equations. Applications.

COMPUTATIONAL ELASTICITY	Learning time: 31h 15m
	Theory classes: 8h Practical classes: 2h Self study : 21h 15m

Description:

Basic concepts and motivation. Elastic constitutive equation. Displacement formulation: Navier equations. Twodimensional elasticity: plane stresses, plane strains and axisymmetry. Weak form of the elastic problem. Computational aspects. Applications.

Last update: 17/05/2012

34959 - CM - Computational Mechanics

COMPUTATIONAL FLUID DYNAMICS	Learning time: 31h 15m
	Theory classes: 8h Practical classes: 2h Self study : 21h 15m
Description:	

Basic concepts and motivation. Rate-of-deformation and spin tensors. Constitutive equation for Newtonian fluids. Euler equations for inviscid flow. Navier-Stokes equations for viscous flow in strong form and in weak form. Reynolds number. Stokes flow and potential flow. Applications.

COMPUTATIONAL PLASTICITY

Learning time: 31h 15m

Theory classes: 8h Practical classes: 2h Self study : 21h 15m

Description:

Basic concepts and motivation. One-dimensional plasticity: elastic and plastic strains; elastoplastic constitutive equation; hardening. Multi-dimensional plasticity: stress and strain invariants; yield surface; plastic flow. Numerical time-integration of the constitutive equation: elastic prediction and plastic correction; iterative methods for the plastic correction. Applications.

COMPUTATIONAL DYNAMICS

Learning time: 31h 15m Theory classes: 8h Practical classes: 2h Self study : 21h 15m

COMPUTATIONAL METHODS FOR WAVE	Learning time: 31h 15m
PROBLEMS	Theory classes: 8h Practical classes: 2h Self study : 21h 15m

Description:

Basic concepts and motivation.

Acoustics: the wave equation. The scalar Helmholtz equation. Vibroacoustics: acoustic

fluid-elastic solid interaction. Computational aspects. Applications.

Electromagnetism: the Maxwell equations. Electrodynamics. The vectorial Helmholtz equation. Computational aspects. Applications.

34959 - CM - Computational Mechanics

Qualification system

Exam and assigned problems.

Bibliography

Basic:

Chorin, A. J.; Marsden, J. E. A mathematical introduction to fluid mechanics. 2nd ed. New York: Springer-Verlag, 1990. ISBN 0387973001.

Clough, Ray W.; Penzien, J. Dynamics of structures. 2nd ed. New York: McGraw-Hill, 1993. ISBN 0071132414.

Donea, Jean M.; Huerta, A. Finite element methods for flow problems. Chichester: John Wiley & Sons, 2003. ISBN 0471496669.

Ihlenburg, F. Finite element analysis of acoustic scattering. New York: Springer-Verlag, 1998. ISBN 0387983198.

Mase, G. Thomas; Mase, George E. Continuum mechanics for engineers. 2nd ed. Boca Raton: CRC, 1999. ISBN 0849318556.

Complementary:

Bathe, Klaus-Jürgen. Finite element procedures. New Jersey: Prentice-Hall, 1996. ISBN 0133014584.

Bonet, Javier; Wood, R. D. *Nonlinear continuum mechanics for finite element analysis*. 2nd ed. Cambridge: Cambridge University Press, 2008. ISBN 9780521838702.

Marsden, Jerrold E.; Hugues, Thomas J. R. Mathematical foundations of elasticity. New York: Dover, 1994. ISBN 0486678652.

Simo, J. C.; Hughes, T. J. R. Computational inelasticity. New York: Springer-Verlag, 1998. ISBN 0387975209.

Zienkiewicz O. C.; Taylor, R. L. The finite element method. 5th ed. Oxford: Butterworth Heinemann, 2000.

Coordinating unit:		200 - FME - Faculty of Mathematics and Statistics		
Teaching unit:		725 - MA I - Department of Applied Mathematics I 726 - MA II - Department of Applied Mathematics II		
Academic year:	2012			
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)		
ECTS credits:	7,5	Teaching languages: English		

Teaching staff

Coordinator: ANTONI GUILLAMON GRABOLOSA

Others: - MARTA CASANELLAS RIUS

Prior skills

* Proficiency in undergraduate mathematics: calculus, algebra, probability and statistics.

* Ability to perform basic operations in linear algebra: eigenvalues and eigenvectors, computation of determinants, rank of matrices...

- * Ability to analyize and solve linear differential equations and discuss the stability of simple vector fields.
- * Interest towards biological applications of mathematics and/or previous working experience.

Requirements

* Basic knowledge of undergraduate mathematics: calculus, ordinary differential equations, linear algebra, probability and statistics.

* First course in ordinary differential equations: linear differential equations, qualitative and stability theory and numerical simulation.

* Basic knowledge of computer programming for scientific purposes.

* Courses and all the bibliography will be in English.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

8. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.9. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

The course will consist of lectures, problem sessions and practical computer sessions. Lectures will consist of expositions about the contents of this subject following a biological problem.

Both practical sessions and problem sessions will be in a PC room and will help the student to develop part of the subject with extensions to the lectures, practical problems with real or simulated data and algorithms to perform these operations. The SAGE computing environment will be used, with interfaces to Python, R and C if necessary.

Learning objectives of the subject

This course is an introduction to the most common mathematical models in biology: in populations dynamics, ecology, physiology, sequence analysis and phylogenetics. At the end of the course the student should be able to:

- * Understand and discuss basic models of dynamical systems of biological origin, in terms of the parameters.
- * Model simple phenomena, analyze them (numerically and/or analytically) and understand the effect of parameters.
- * Understand the diversity of mechanisms and the different levels of modelization of physiological activity.
- * Obtain and analyze genomic sequences of real biological species and databases containing them.
- * Use computer software for gene prediction, alignment and phylogenetic reconstruction.
- * Understand different gene prediction, alignment and phylogenetic reconstruction methods.
- * Compare the predictions given by the models with real data.
- * Communicate results in interdisciplinary teams.

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%	
	Self study:	127h 30m	68.00%	

Content

Learning time: 56h 20m	
Theory classes: 9h Practical classes: 9h Self study : 38h 20m	
	Theory classes: 9h Practical classes: 9h

Description:

- 1. Differential equations models. Stability and Bifurcations. Applications to population dynamics.
- 2. One-dimensional discrete models. Chaos in biological systems.
- 3. Introduction to stochastic models. Branching processes
- 4. Simulation with SAGE

Mathematical models in Genomics	Learning time: 62h 30m
	Theory classes: 12h Practical classes: 8h Self study : 42h 30m
Description [.]	

Description:

1. Brief introduction to genomics (genome, gen structure, genetic code...). Genome databases online.

 Phylogenetics: Markov models of molecular evolution (Jukes-Cantor, Kimura, Felsenstein hierarchy...), phylogenetic trees, branch lengths. Phylogenetic tree reconstruction (distance and character based methods).
 Genomics: Markov chains and Hidden Markov models for gene prediction. Tropical arithmetics and Viterbi algorithm. Forward and Expectation-Maximization algorithms.

4. Multiple sequence alignment: dynamical programming, tropical arithmetics and Pair-HMMs

Mathematical Models in Neurohysiology	Learning time: 56h 20m
	Theory classes: 11h Practical classes: 7h Self study : 38h 20m

Biological networks	Learning time: 12h 20m Theory classes: 3h Practical classes: 1h Self study : 8h 20m
Description: 1. Complex networks in biology.	

2. Networks of neurons.

Qualification system

The course has three parts and each of these parts will give a part of the qualification, based on practical problems to be delivered. Besides, students will be asked to write a report on a specialized subject (from a list of suggested topics) and deliver it 2 days before presenting it in front of the students and teachers. The contents and the clarity of explanations and exposition.

The final qualification will be given by the formula 0.6*NP+0.4*NT where:

- NP=NP1+NP2+NP3 practice qualification: this is the qualification of 3 practical qualifications and the participation at class.

- NT=report qualification.

Bibliography

Basic:

Allman, Elizabeth S.; Rhodes, John A. *Mathematical models in biology: an introduction*. Cambridge: Cambridge University Press, 2004. ISBN 9780521819800.

Istas, Jacques. Mathematical modeling for the life sciences. Berlin: Springer, 2005. ISBN 354025305X.

Murray, J.D. Mathematical biology. 3rd ed. Berlin: Springer, 2002. ISBN 978-0-387-95223-9.

Pachter, Lior; Sturmfels, Bernd. *Algebraic statistics for computational biology*. Cambridge: Cambridge University Press, 2005. ISBN 0521857007.

Keener, James P.; Sneyd, James. *Mathematical physiology. Vol 1.* 2nd ed. New York: Springer Verlag, 2009. ISBN 9780387758466.

Izhikevich, Eugene M. *Dynamical systems in neuroscience : the geometry of excitability and bursting.* Cambridge: MIT Press, 2007. ISBN 0262090430.

Ermentrout, Bar; Terman, David H. *Mathematical foundations of neuroscience*. New York: Springer, cop. 2010. ISBN 9780387877075.

Complementary:

Stein, William A. [et al.]. *Sage mathematics software (Version 4.4.2)* [on line]. 2010 [Consultation: 11/05/2010]. Available on: http://www.sagemath.org/.

Pikovsky, Arkady; Rosenblum, Michael; Kurths, Jürgen. *Synchronization : a universal concept in nonlinear sciences*. Cambridge: Cambridge University Press, 2001. ISBN 0521592852.

Durbin, Richard [et al.]. *Biological sequence analysis : probabilistic models of proteins and nucleic acids*. Cambridge: Cambridge University Press, 1998. ISBN 0521629713.

Renart Alfonso; Brunel, Nicolas; JingWang, Xiao. "Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks". Feng, Jianfeng. *Computational neuroscience : comprehensive approach* [on line]. Boca Raton: Chapman & Hall/CRC, 2004. p. 432-490Available on:

<http://nba.uth.tmc.edu/homepage/cnjclub/2007summer/renart_chapter.pdf>.

Rolls, Edmund T.; Deco, Gustavo. *The noisy brain : stochastic dynamics as a principle of brain function*. Oxford: Oxford University Press, 2010. ISBN 9780199587865.

Felsenstein, J. PHYLIP [on line]. Available on: <http://evolution.genetics.washington.edu/phylip.html>.

European Bioinformatics Institute; Wellcome Trust Sanger Institute. *Ensembl project* [on line]. Available on: http://www.ensembl.org.

Coordinating unit	: 200 -	FME - Faculty of Mathematics and Statistics
Teaching unit:	725 -	MA I - Department of Applied Mathematics I
Academic year:	2012	
Degree:		ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). nit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff	
Coordinator:	M. TERESA MARTINEZ-SEARA ALONSO
Others:	AMADEU DELSHAMS I VALDES - A M. TERESA MARTINEZ-SEARA ALONSO - A

Opening hours

Timetable: A convenir

Prior skills

Basic knowledge of calculus, algebra and differential equations. Some basic ideas of local dynamical systems.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

We don't distinguish theoretical and practical classes. Some results about modern theory in Dynamical systems are presented in class. The main idea is to give basic knowledge and useful tools in the study of a dynamical system from both quantitative and qualitative points of view. We will stress the relation between different kind of systems and we will mainly focus in the use of perturvatives techniques to study a dynamical system globally.

Learning objectives of the subject

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%	
	Self study:	127h 30m	68.00%	

Content

-Invariant objects in Dynamical Systems	Learning time: 20h Theory classes: 5h Practical classes: 5h Other activities: 10h
Description:	1

Continuous and dicrete Dynamical Systems. Poincaré map. Local behaviour of hyperbolic invariant objects. Invariant manifolds. Central manifold. Local bifurcations.

-Perturbation theory in Dynamical Systems	Learning time: 20h Theory classes: 5h Practical classes: 5h Other activities: 10h
Description: Clasic perturbation theory. Perturbed homoclinic orbits in the pla	ane. Melnikov method.

Discrete Dynamical Systems	Learning time: 20h
	Theory classes: 5h Practical classes: 5h Other activities: 10h
Description	

Jescription:

Discrete systems. Denjoy theorem. Generic properties. Sarkovskii theorem.

-Homoclinic points and chaotic Dynamics	Learning time: 20h Theory classes: 5h Practical classes: 5h Other activities: 10h
Description: Homoclinic points and bifurcations. Hyperbolic sets and transvers chaotic dynamics. Newhouse phenomenum.	sal homoclinic points. Dynamical systems with

-Normal forms	Learning time: 20h
	Theory classes: 5h Practical classes: 5h Other activities: 10h
Description:	

Poincaré-Dulac normal forms. Convergence: Poincaré and Siegel domains. Hamiltoniane normal forms. Bifurcations. Lie series. Construction of algebraic and analytic manipulators.

-Normal forms: its aplication to stability in	Learning time: 20h
Dynamical Systems	Theory classes: 5h Practical classes: 5h Other activities: 10h

Description:

KAM (Kolmogorov-Arnold-Moser) theory, twist theorem. Small divisors and diophantic inequalities. Efective stability and Nekhoroshev theorem.

Splitting of separatrices, Melnikov potential. Arnold diffusion.

Qualification system

The students have to do some problems and a research work. On the other hand they will attend the "Jornades d'iniciació als Sistemes dinàmics i les EDP" and produce a document about them.

Regulations for carrying out activities

There are no exams.

Bibliography

Last update: 17/05/2012

34962 - HS - Hamiltonian Systems

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics	
Teaching unit:		725 - MA I - Department of Applied Mathematics I	
Academic year:	2012		
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)	
ECTS credits:	7,5	Teaching languages: English	

Teaching staffCoordinator:AMADEU DELSHAMS I VALDESOthers:

AMADEU DELSHAMS I VALDES - A

Prior skills

Knowledge of calculus, algebra and ordinary differential equations.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Standard exposition in front of the blackboard, resolution of exercices, completion of a project and/or attendance to the winter school RTNS

http://www.dance-net.org/index.php?contingut=rtns.php

34962 - HS - Hamiltonian Systems

Learning objectives of the subject

To comprehend the basic foundations of the theory of Hamiltonian systems, and to understand its applications to the Celestial Mechanics and other fields.

udy load			
Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Content

Hamiltonian formalism	Learning time: 26h
	Theory classes: 4h Practical classes: 4h Self study : 18h

Description:

Hamiltonian dynamical systems: symplectic maps, symplectic manifolds. Linear Hamiltonian systems and their application to the study of stability of equilibrium points.

Hamiltonian and Lagrangian systems	Learning time: 13h
	Theory classes: 2h Practical classes: 2h Self study : 9h

Description:

Lagrangian systems. Configuration manifold, tangent and cotangent bundles. Systems with symmetries, Noether theorem. Principle of minimal action.

Integrable and quasi-integrable Hamiltonian	Learning time: 13h
systems	Theory classes: 2h Practical classes: 2h Self study : 9h

Description:

Complete integrability and Liouville-Arnold theorem. Quasi-periodic flows on a torus, resonances. Examples of quasi-integrable systems. Twist maps and billiards. Analytic non-integrability.

34962 - HS - Hamiltonian Systems

Invariant objects of dynamical systems	Learning time: 13h
	Theory classes: 2h Practical classes: 2h
	Self study : 9h
Description:	
Continuous and discrete dynamical systems, Poincaré map hyperbolic invariant objects: invariant manifolds. Center m	

Perturbation theory in dynamical systems	Learning time: 13h Theory classes: 2h Practical classes: 2h Self study : 9h
Description: Classical perturbation theory. Perturbations of homoclinic orbits in	n the plane: Melnikov method.

Homoclinic points and chaotic dynamics	Learning time: 13h	
	Theory classes: 2h Practical classes: 2h Self study : 9h	

Description:

Homoclinic points and bifurcations. Hyperbolic sets and transverse homoclinic points: systems with chaotic dynamics. Newhouse phenomenon.

Normal forms	Learning time: 13h
	Theory classes: 2h Practical classes: 2h Self study : 9h
Description:	Deinseré and Siegel demains

Poincaré-Dulac normal forms. Convergence: Poincaré and Siegel domains. Hamiltonian normal forms. Bifurcstions. Lie series. Construction of algebraic manipulators.

34962 - HS - Hamiltonian Systems

systems Theory classes: 2h Practical classes: 2h Self study : 9h
--

Description:

KAM theory (Kolmogorov-Arnold-Moser), twist theorem. Small divisors and Diophantine inequalities. Effective stability and Nekhoroshev theorem. Splitting of separatrices, Melnikov potential. Arnold diffusion.

Discrete dynamical systems Learning time: 13h Theory classes: 2h Practical classes: 2h Self study : 9h

Description:

Discrete systems. Denjoy theorem. Generic properties. Sarkovskii theorem.

Recent Trends in Nonlinear Science	Learning time: 57h 30m
	Theory classes: 20h Self study : 37h 30m
Description	

Description:

Smooth Ergodic Theory: Lyapunov exponents, Oseledets' Theorem, nonuniform hyperbolicity.

Delay equations with applications to engineering: delay equations, stability, bifurcations.

Multi-frequency Oscillations in Dynamical Systems.

Planning of activities

RECENT TRENDS IN NONLINEAR SCIENCE

Description:

Attendance to the winter school RTNS http://www.dance-net.org/index.php?contingut=rtns.php

Specific objectives:

To learn from oustanding researchers a view of the state of the art in several research topics, interacting with students of the rest of Spain and of the World.

4/5

Last update: 17/05/2012

34962 - HS - Hamiltonian Systems

Qualification system

The students have to do some problems and a research work. Moreover, they will attend the RTNS and produce a document about them.

Bibliography

Basic:

Arnol'd, V. I.; Kozlov, Valerii V.; Neishtadt, Anatoly I. *Mathematical aspects of classical and celestial mechanics*. 3th ed. Berlin: Springer-Verlag, 2006. ISBN 3540282467.

Meyer, Kenneth R.; Hall, Glen R.; Offin, Dan. *Introduction to Hamiltonian dynamical systems and the n-body problem.* 2nd ed. New York: Springer-Verlag, 2009. ISBN 978-0-387-09723-7.

Treschev, Dmitry; Zubelevich, Oleg. *Introduction to the perturbation theory of Hamiltonian systems*. Berlin: Springer Verlag, 2010. ISBN 978-3-642-03027-7.

Bountis, Tassos ; Skokos, Haris. Complex Hamiltonian dynamics. Springer, 2012. ISBN 9783642273049.

Others resources:

Hyperlink

Grup de sistemes dinàmics

https://recerca.upc.edu/sd

pàgina web del Grup de Sistemes Dinàmics de la UPC on es descriuen diversos projectes i els investigadors que hi treballen així com diverses activitats relacionades

34963 - ACPDE - Advanced Course in Partial Differential Equations

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		725 - MA I - Department of Applied Mathematics I
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff

Coordinator: XAVIER CABRE VILAGUT

Others:

BLANCA AYUSO DE DIOS - A XAVIER CABRE VILAGUT - A

Prior skills

Basic knowledge of Partial Differential Equations. Basic knowledge of Mathematical Analysis (undergraduate level).

Requirements

Undergraduate courses in Partial Differential Equations and in Mathematical Analysis.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

34963 - ACPDE - Advanced Course in Partial Differential Equations

Teaching methodology

Classes will combine theoretical aspects and proofs with resolution of concrete problems and exercises. Further reading from the bibliography will be given often.

Learning objectives of the subject

Understand the classical methods to solve the Laplace, heat, and wave equations. Understand the role of Sobolev norms and compact embeddings to solve PDEs and find spectral decompositions. Learn the main methods available to solve nonlinear PDEs, through simple cases.

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Classical methods for the Poisson and heat equations	Learning time: 47h Theory classes: 15h	
	Self study : 32h	

Maximum principles and Green's functions for the Poisson and heat equations.

Sobolev spaces and variational methods	Learning time: 47h
	Theory classes: 15h Self study : 32h
Description	

Description:

Basic properties of Sobolev spaces. Weak or variational formulation of boundary problems for linear elliptic PDEs.

Evolution equations Learning time: 46h 45m	1
Theory classes: 15h Self study : 31h 45m	

Description:

Prabolic equations. Galerkin method. Semigroups. Nonlinear conservation laws.

34963 - ACPDE - Advanced Course in Partial Differential Equations

Learning time: 46h 45m

Theory classes: 15h Self study : 31h 45m

Description:

Calculus of Variations. Nonlinear eigenvalue problems. Semi-linear elliptic equations.

Qualification system

The evaluation of the course is based:

- on the weekly resolution of problems proposed in class;

- on a presentation (written and in class) of a further developed

topic on the subject;

- eventually there will be a final comprehensive exam.

The active participation during the course will be a requirement for the evaluation of the final exam.

Bibliography

Basic:

Evans, Lawrence Craig. *Partial differential equations*. Providence, Rhode Island: American Mathematical Society, 1998. ISBN 0821807722.

Salsa, Sandro. Partial differential equations in action : from modelling to theory. Milan: Springer, 2008. ISBN 9788847007512.

Brézis, H. Análisis funcional : teoría y aplicaciones. Madrid: Alianza, 1984. ISBN 8420680885.

Complementary:

Struwe, Michael. Variational methods : applications to nonlinear partial differential equations and hamiltonian systems. 2nd rev. and substantially expanded ed. Berlin: Springer, 1996. ISBN 3540520228.

Gilbarg, David; Trudinger, Neil S. *Elliptic partial differential equations of second order*. 2nd ed., rev. third printing. Berlin: Springer-Verlag, 1998. ISBN 354013025X.

Zuily, C.. Problems in distributions and partial differential equations. Paris: North-Holland, 1988.

Necas, Jindrich. Introduction to the theory of nonlinear elliptic equations. Chichester: John Wiley & Sons, 1986. ISBN 0471908940.

34964 - NMDS - Numerical Methods for Dynamical Systems

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit:		725 - MA I - Department of Applied Mathematics I
Academic year:	2012	
Degree:		ER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). hing unit Optative)
ECTS credits:	7,5	Teaching languages: English

А

Teaching staff

Coordinator:	MERCEDES OLLE TORNER
Others:	MERCEDES OLLE TORNER -

Prior skills

Good knowledge of a programming language.

Requirements

Knowledge of theory of systems of differential equations, algebra, calculus and numerical analysis.

Degree competences to which the subject contributes

Specific:

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

34964 - NMDS - Numerical Methods for Dynamical Systems

Teaching methodology

Theoretical sessions (presence of the students is necessary) and weekly practical tutorized assignments.

Learning objectives of the subject

-To reach an advanced formation in using numerical methods applied to dynamical systems

- Carry out numerical simulations of particular examples
- To relate different aspects of the dynamics in order to have a global picture of the
- behavior of a given problem
- To learn different tools to analyse and deal with a problem
- Ability in programming algorithms dessigned to solve particular problems in dynamical systems

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

Content	
Numerical (preliminary) tools for practical purposes: integrators for ODE and graphical interfaces. Examples.	Learning time: 4h Theory classes: 2h Practical classes: 2h

Dynamical systems: introduction, definitions. Continuous and discrete dynamical systems. Orbit generation. Numerical computation of Poincare maps. Examples.	Learning time: 6h Theory classes: 3h Practical classes: 3h
---	--

Computation and stability of fixed points. Vector fields and maps. Implementation and examples.	Learning time: 10h Theory classes: 5h Practical classes: 5h
---	---

Computation and stability of periodic orbits.	Learning time: 10h
Implementation, continuation of families,	Theory classes: 5h
bifurcations. Multiple shooting.	Practical classes: 5h

34964 - NMDS - Numerical Methods for Dynamical Systems

Computation of tori: representation, computation and continuation. Implementation and examples.	

Analysis of bifurcations. Some examples.	Learning time: 15h Theory classes: 7h 30m Practical classes: 7h 30m
	·

Qualification system

100% of the qualification will be obtained from the practical assignments done.

Regulations for carrying out activities

No rules, in principle.

Bibliography

Basic:

_

Lichtenberg, Allan J; Lieberman, M. A. Regular and chaotic motion. New York: Springer-Verlag, 1983. ISBN 0387907076.

Press, William H. *Numerical recipes in C : the art of scientific computing*. Cambridge: Cambridge University Press, 1988.

Arrowsmith, D. K; Place, C. M. *An introduction to dynamical systems*. Cambridge: Cambridge University Press, 1990. ISBN 0521303621.

Particular articles related to the topics of the course and some notes from suitable web pages.

Coordinating unit	: 200 -	FME - Faculty of Mathematics and Statistics
Teaching unit:	727 -	MA III - Department of Applied Mathematics III
Academic year:	2012	
Degree:	MASTER IN (Teaching ur	ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). iit Optative)
ECTS credits:	7,5	Teaching languages: English

Teaching staff Coordinator: MARCO DISCACCIATI Others: MARCO DISCACCIATI - A

Prior skills

Basics on numerical methods, differential equations and calculus.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Lectures, practical work at computer room, exercises and home works.

Learning objectives of the subject

This course is an introduction to numerical methods for the approximation of partial differential equations. The indicative content of the course is as follows:

- Introduction to partial differential equations and to the finite elements method.

- Mathematical background: distributions, Sobolev spaces and weak formulations.

- Finite elements for elliptic problems: weak formulation with different types of boundary conditions; well-posedness of the variation formulation (the Lax-Milgram lemma); set up, analysis and error estimates for the finite elements Galerkin approximation.

- Finite element approximation of the Navier-Stokes equations for incompressible flows.

- Introduction to domain decomposition methods.

The course will include frontal lectures and exercises, as well as computer sessions aimed at introducing the bases of the programming of finite element methods.

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%
	Self study:	127h 30m	68.00%

20	Content					
	Introduction to partial differential equations and basics of functional analysis	Learning time: 12h Theory classes: 4h Practical classes: 2h Self study : 6h				

Elliptic partial differential equations	Learning time: 32h	
	Theory classes: 4h Practical classes: 4h Self study : 24h	

32h
ses: 4h sses: 4h 24h

Approximation of elliptic PDEs by the Galerkin finite elements method	Learning time: 33h 30m Theory classes: 4h Practical classes: 4h Self study : 25h 30m	
---	---	--

Practic	time: 44h ry classes: 10h cal classes: 10h tudy : 24h
---------	--

Introduction to domain decomposition methods	Learning time: 34h
	Theory classes: 6h Practical classes: 4h Self study : 24h

Qualification system

Continuous assessment: during the course students will be required to carry out two projects. The projects must be done individually and they constitute the 30% of the final mark.

Final exam: at the end of the course a written exam will take place. The exam will focus on all the topics studied during the course and it constitutes the 70% of the final mark.

Bibliography

Basic:

Hughes, Thomas J. R. *The finite element method : linear static and dynamic finite element analysis*. Englewood Cliffs, NJ: Prentice-Hall International, 1987. ISBN 0133170179.

Wait, R.; Mitchell, A. R. Finite elements analysis and applications. Chichester: John Wiley, 1985. ISBN 0471906778.

Zienkiewicz, O.C.; Taylor, R. L. The finite element method. 5th ed. Oxford: Butterworth Heinemann, 2000.

Donea, Jean M; Huerta, A. Finite element methods for flow problems. Chichester: John Wiley & Sons, 2003. ISBN 0471496669.

Ainsworth, M.; Oden, J. T. *A posteriori error estimation in finite element analysis*. New York: John Wiley & sons, 2000. ISBN 047129411X.

Complementary:

Hoffman, Joe D. *Numerical methods for engineers and scientists*. 2nd ed. rev. and exp. New York: Marcel Dekker, 2001. ISBN 0824704436.

Johnson, Claes. *Numerical solution of partial differential equations by the finite element*. Mineola, New York: Dover Publications, 2009. ISBN 9780486469003.

Strang, G.; Fix, G. J. An analysis of the finite element method. Englewood Cliffs, NJ: Prentice-Hall, 1973. ISBN 0130329460.

Trefethen, Lloyd N.; Bau, David. Numerical linear algebra. Philadelphia: SIAM, 1997. ISBN 9780898713619.

Last update: 19-06-2012

34966 - VD - Differentiable Manifolds

Coordinating unit	:	200 - FME - Faculty of Mathematics and Statistics
Teaching unit: 743 - MA IV - Department of Applied Mathematics IV		743 - MA IV - Department of Applied Mathematics IV
Academic year:	2012	
Degree:	MASTER IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Teaching unit Optative)	
ECTS credits:	7,5	Teaching languages: English

Teaching staff

Coordinator:	FRANCESC XAVIER GRACIA SABATE
Others:	
	FRANCESC XAVIER GRACIA SABATE - A MIGUEL CARLOS MUÑOZ LECANDA - A

Prior skills

Basic courses on algebra, calculus, topology and differential equations, and calculus on manifolds.

Degree competences to which the subject contributes

Specific:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.

3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.

4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Generical:

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical selfappraisal. Choosing the best path for broadening one's knowledge.

6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
 EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Theory classes will be used to present and develop the contents of the course. Most of the topics will be presented by the instructors, but there can be some sessions presented by students. Along the course the students will be given problems to solve as homework.

Learning objectives of the subject

34966 - VD - Differentiable Manifolds

The subject focuses on the fundamental topics used in differential geometry and applications in different areas. By the end of the course, students should:

- Be able to understand all the ideas developed along the course.

- Be able to apply the studied concepts to other areas such as theoretical mechanics, control theory, mathematical physics or geometric dynamical systems.

- Be able to enter a research group on these kinds of topics and their applications.

- Be able to search the bibliography, and to understand the scientific literature on the subject.
- Be able to write and present an essay on mathematics.

Study load

Total learning time: 187h 30m	Theory classes:	60h	32.00%	
	Self study:	127h 30m	68.00%	

Content				
Learning time: 47h Theory classes: 15h Self study : 32h				

Basic algebraic topology and topological algebra	Learning time: 47h
	Theory classes: 15h Self study : 32h

Lie groups and Lie algebras	Learning time: 62h 30m
	Theory classes: 20h Self study : 42h 30m

Theory classes: 10h Self study : 21h	Some applications of Lie groups	Learning time: 31h
		Theory classes: 10h Self study : 21h

34966 - VD - Differentiable Manifolds

Qualification system

Evaluation is based on students' participation and homework, and on the completion and presentation of an essay (a written work) on a topic on differential geometry. Eventually, there will be a final examination.

Bibliography

Basic:

Lee, John M. Introduction to smooth manifolds. New York: Springer-Verlag, 2003. ISBN 0387954481.

Bott, Raoul; Tu, Loring W. Differential forms in algebraic topology. New York: Springer-Verlag, 1982. ISBN 0387906134.

Duistermaat, J. J. ; Kolk, Johan A. C. Lie groups. Berlin: Springer-Verlag, 2000. ISBN 3540152938.

Greub, W. H.; Halperin, S.; Vanstone, R. *Connections, curvature and cohomology (vol. I)*. New York: Academic Press, 1972-1976.

Greub, W. H.; Halperin, S.; Vanstone, R. *Connections, curvature and cohomology* (vol. II). New York: Academic Press, 1972-1976.

Complementary:

Lee, John M. *Riemannian manifolds [Recurs electrònic] : an introduction to curvature* [on line]. New York: Springer, 1997 [Consultation: 05/06/2012]. Available on:

<http://ebooks.springerlink.com/UrlApi.aspx?action=summary&v=1&bookid=104528>. ISBN 038798271X.

Massey, William S. Algebraic topology: an introduction. New York: Springer-Verlag, cop. 1977. ISBN 0387902716.

Warner, Frank W. *Foundations of differentiable manifolds and lie groups*. New York, NY [etc.]: Springer-Verlag, cop. 1971. ISBN 0387908943.

Dieudonné, Jean. Éléments d'analyse (vol. II-V). Paris: Gauthier-Villars, cop. 2003. ISBN 2876472155.

Olver, Peter J. Applications of Lie groups to differential equations. New York: Springer-Verlag, 1986. ISBN 0387940073.

Last update: 19-06-2012