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1 Introduction

Last summer, while I was with some friends during a hot afternoon, we discovered a new game

that entertained us a lot. The game was called ”Microrobots”, and it was played the following

way:

There is a board of 6x6 cells. On each cell there is a number and a color. Two cells are picked

randomly and the players need to find the minimum distance between them. The movements can

only be made in horizontal or vertical, and you can only move from the cell you are to another one

that shares either the same color or the same number. As we can see, the rules were quite easy,

but once we started to play we saw that the game had much more things to give us than just some

fun in one afternoon. First of all, the board was composed of four non-symmetrical pieces that you

had to put forming a square. It was said that with all the combinations that could be formed, the

game could still be played, so that it was always a connected graph (Graph that from any node

you can arrive to any other node). Moreover, we soon discovered that the game itself was much

harder than expected; finding the shortest path was quite a tough activity for us. A lot of boards

could be formed, and while in ones it seemed very easy to solve any combination, in others seemed

nearly impossible.

Figure 1: A quick view of the different parts of the game

In the end, Microrobots raised too many questions inside me to leave them unsolved, and I

decided to analyze the game in a more severe and rigorous way, in order to solve the problems that

I had thought about. I decided that I wanted to combine different branches of mathematics, as

it would be easier to obtain more interesting results: graph theory, counting principles, statistics

and programming were the main foundations behind my project.

I narrowed my research, and the question that I finally asked myself was, to what extent do the

different boards that can be composed with Microrobots have the same level of difficulty?
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2 Concepts

2.1 Graph Theory

Once a board was created, I needed a mathematical way to express this board and operate with

it. It was a very direct association for me to see the board of this game as a graph; more precisely,

an undirected graph of 36 nodes (with every node associated with a cell). This is why, to do all

the mathematical operations my work needs, I will be using graph theory, a discipline within the

topic of discrete mathematics. All the concepts I will use are going to be either proved shortly or

explained if they cannot be proved (for example, a definition).

2.2 Combinatorial analysis

Another question that quickly arose in me when I first started to play Microrobots is the total

amount of different boards that can be created. Although it is not a major issue, determining this

number requires careful inspection of the rotations and symmetries as you could create duplicates.

This situation reminds me some of the problems that I have solved during my maths course.

The main importance of this figure (total amount of boards) is linked to the statistical analysis

that will focus the determination of the difficulty of different boards. Due to the huge number of

boards, I need to define a sample of boards to analyze. In order to have significant results for my

research, the sample should be based on sample theory (a branch of statistics) and to define the

sample I needed the total amount of boards.

2.3 Statistical calculus

I have just identified a first approach required in my work to the world of statistics. Nevertheless,

there is a much more central point that requires statistical analysis. As I will define later, difficulty

of a concrete board is the mean of all the steps used to solve all the different paths, so the mean

of all the different possibilities that someone can play in the same board. Therefore, to analyze if

there are significant differences in the difficulty of boards I need to determine if there are differences

that are statistically significant amongst them.

In my case I will use modeling techniques to determine the distribution of paths in a board and

statistical analysis to determine if there are significant differences. Although the concepts I need

in that discipline are beyond the syllabus that I have studied in my maths course, all the basic

concepts (moments, distribution, hypothesis test, etc.) were a significant help for me when I did

my own research in these topics.

2.4 Programming

As we start to notice, my project implies managing a large amount of data -we will later see that

there exists lots of different boards, and lots of operations need to be done with each one-. With

this in mind I decided to write programs to help me with this task. Everything that the program

does is explained and based on the theory learned during the course of Mathematics HL and some

extra topics that I have been researching on; I created the program merely for the fact that it

can do calculations much faster than manually. The base of the program is on the annex and

it is programmed with Python 3.6. Moreover, to do the statistical calculus I will use XLSTAT

(https://www.xlstat.com/en/).
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3 Methodology

3.1 Calculus of the number of boards

To calculate the number of boards, it is necessary to explain how the boards were created. The

game has 4 pieces, each piece being a 3x3 sub-board. You should place these four pieces forming a

square of 2x2. The pieces can be put in any position or orientation if they are forming a square.

Figure 2: Scheme of how the boards can be created

A first calculation that seems interesting to understand the amount of data we are managing

in our problem is the number of different boards that can be created. There are 4 pieces, that

can be put in four different positions, with 4 different orientations. Combining elements (in our

case pieces) in different positions is the classical problem of combinatorial analysis. In the first

position you can put any of the 4 pieces, in the next position, you can only put 3 as you have

already put one, in the next 2... which finally results in a total combination of 4! possible boards

(4·3·2·1). This number should be multiplied by the four different rotations of every piece to obtain

the following result.

4! · 44 = 6144

This is the total number of boards that we can create. But it is not our final result, as we are

looking for the different boards that exist, and in those 6144 there are lots of boards which are

repeated. A rotation of board will not change the distances between the points, it will just change

the players perspective, a thing that does not influence our work at all. Each board has exactly

16 boards with the same connections, which are the four rotations of the complete board times

the 4 rotations of half a board. All this cases generate the same graph, so we will subtract them.

Obtaining than, that there only exist the following number of different boards.

6144

16
= 384

As we can see this number is quite large taking into consideration that we have just 4 pieces for

each board. As we have said before, to tackle with the problem we are going to analyze only a

sample, so we will describe later how to get a significant sample in our case.
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3.2 Difficulty of a board

Since the beginning of this project, we have talked about ’difficulty’ of boards. To start working,

let’s propose a formal definition. For me, a board was harder if the minimum distance between

random points were longer. Taking that into account and referring to what is mentioned in the

subsection 2.3, let’s assume a general definition for this work.

The difficulty of a board is the average of the minimum distance between all the cells in the same

board assuming that the distance is the shortest path between two points, following the rules of

the game.

We can see that a difference in the difficulty of a board would require that there are many distances

that change in order to modify the average distance of any board.

3.3 Calculus of distance between cells

To make all this relations, one of the first steps is being able to find the minimum distance between

two cells following the rules of the game. Applying the theory studied in discrete mathematics I

came up with several different options to do, for example Dijkstra’s algorithm (which appears in

the Pearson Mathematics HL book). Although it seemed a very good option, I finally decided to

apply the concept of adjacency matrices. The reason for it was quite simple; although Dijkstra was

quite more efficient to find distances between two single points, in my project I need to look for

all the distances of the graph that represents each board. Taking this into account and applying

that an adjacency matrix of a graph powered up to n is equal to the connections of the same graph

with n steps (see demonstration below), it was much more efficient to do it with this method. It

is relatively easy to prove this property using Induction.

Lemma 1. An adjacency matrix powered up to n is the connections of the same graph with n steps

Proof. Base Case: If we take an adjacency matrix and we power it to 1, the property is true

as the matrix doesn’t change, and for definition the adjacency matrix shows the direct (1 step)

connections in a graph.

Inductive Step: Assuming it is true for any given n, we want to prove it true for n + 1. This

implies that we want to prove that if a matrix up to the power of n represents the different paths

between the cells, multiplied to the original matrix will give a matrix that represents the different

paths with n+ 1 steps.

Let A be the adjacency matrix of a graph G Let Vi and Vk be different points from the graph Let

Fnik be the different path of n length between Vi and Vk We can express a walk of length n+1 steps

from vi to vj as a n steps path from vi to vk and a walk of length 1 from vk to vj .

That means, the number of paths of n+1 steps from vi to vj is the sum over of all walks from vi

to vk times the number of ways to walk in one step from vk to vj . Thus:

Fij(n+ 1) =

V∑
k=1

AikF
n
kj =

V∑
k=1

AikA
n
kj

Which is the definition of the formula for the product used in the multiplication of matrices. There-

fore we have proved it true for n+1 assuming it true for n.

Conclusion: As we have proven it true for a base case and assuming it true for n=k, true for

k+1, it is true for all natural numbers.
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Once I made an operation with one adjacency matrix, I could use it to find the distances

between all the points I wanted from the same matrix. If i had used Dijkstra it would have been

much harder as I would need to apply the algorithm several times in order to fins the different

distances.

3.4 Sampling Theory

The number of boards obtained in the subsections above clearly exceeds our capacity to compute.

Therefore, I decided to take a sample of boards to make my research. In order to achieve sound

results, I used the conclusions of Sampling Theory to determine the size of the sample to obtain

statistically significant results.

According to the Sample Theory, the size of the sample to identify possible differences amongst

groups of data with a confidence level (the level of certainty that a group of data can give us among

the total) is determined by the following expression:

n =
Nσ2Z2

α

e2(N − 1) + σ2Z2
α

n: size of the required

N: total number of population (in our case 384 boards)

Zα : represents the level of confidence we want in our results (for 95 percent of confidence the value

is 1,96). This 95 percent level of confidence means that in less than 5% of the cases the results of

take a sample of n results differs from real results (the results of the total of the cases) in more

than e (the error of our estimation). This level of confidence is the most usual when designing an

experiment with samples.

σ : variance of the population. In case of ignorance, as is our case, p=0,5 and q=1-p=0,5

e: represents the error in our estimation, this is, the difficulty of each board. As we can see af-

terwards, the steps of each path that defines the difficulty varies in a discrete way in the range

[2,10] so a value of e = 10% (that represents in our case round 1) is discriminant enough for our

purposes.

Applying this formula I arrived to the conclusion that I needed a sample of 76 boards to be sig-

nificant. This sample also needed to be completely random, to obtain this randomness I made the

computer chose the boards based on a random time seed, a random value which is obtained from

a list depending on the time since the computer was turned on.

3.5 Proof Statistical samples

The calculation for the significant statistical sample is obtained through the calculation of the

confident estimated interval for the mean, which is the following formula.

X − Z σ
2
√
n

2

√
N − n
N − 1

≤ u ≤ X + Z
σ
2
√
n

2

√
N − n
N − 1

From where the error is the following one

e = Z
σ
2
√
n

2

√
N − n
N − 1
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From this formula of the error of the confident interval of the mean, we need to isolate the n,

to do it we follow the next procedure.

We square everything

e2 =

(
Z

σ
2
√
n

2

√
N − n
N − 1

)2

e2 = Z2σ
2

n

N − n
N − 1

Multiplying the fraction we obtain the following

e2 =
Z2σ2(N − n)

n(N − 1)

From here we do basic algebra to obtain what is next

e2(N − 1)n = Z2σ2(N − n)

e2nN − e2n = Z2σ2N − Z2σ2n

e2nN − e2n+ Z2σ2n = Z2σ2N

n(e2N − e2 + Z2σ2) = Z2σ2N

Now we finally isolate the n

n =
Z2σ2N

e2N − e2 + Z2σ2

And we achieve the formula we have used to determine the size of the sample

n =
Z2σ2N

e2(N − 1) + Z2σ2
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4 Results

Before applying the statistical test that would made me obtain a real conclusion, I decided to obtain

a first sample of the different difficulties in 76 different boards (significant statistical sample) to

start having an idea of their behavior.

The following table presents the most relevant statistical measures obtained from 76 random boards

and some basic statistic operations to start having a first idea of the behaviour of the game.

Statistical measure value

X̄, mean of the difficulty 3,43133

Standard Deviation 0,37816

Percentage of deviation 8,8818

Minimum 2,79784

Maximum 4,25772

Range 1,45988

Range Percentage 34,288

Table 1: Some interesting data to have a first approach to the problem in which we see the results

from 76 different boards analyzed

As we can see, the results of the difficulty of different boards should be analyzed. There are

differences of the means, the standard deviation is significant (10% of the mean value) and range

is wide (35% of the mean value). The mean is located nearly in the middle between the minimum

and the maximum so we can conclude there are the same number more or less of upper outlayers

than of lower outlayers.

In this point I saw that my data analysis was making me unable to obtain deep conclusions, I

could see there were some differences between the boards, but I couldn’t determine whether these

differences were significant or not due to the fact I had not done any tests. I decided then to go

further in the statistical analysis to determine if the differences were significant enough to answer

the question I established at the beginning of my work.

Doing some research I finally found that this is a classical problem in statistical analysis: determine

if some samples come from the same collective or not. Each sample has a specific value (with

differences amongst them). The technique used to solve this question is called ANOVA TEST, a

test designed to tell you whether or not some different samples were or not equivalent (are part of

the same collection).

4.1 Results of Analysis of the Variance of one Factor (ANOVA)

ANOVA is designed to test the significance of difference between three or more samples to test

the null hypothesis, that the sample means are equal. In my case I have used a confidence level

of 95 percent, due to the facts it’s a very common one and because it gives me a sufficient level of

confidence to distinguish between one more step and on step less.

The main conception of ANOVA analysis lies on:

1. Different sampling (in our case different board configuration)

2. Null Hypothesis (H
0
): the mean of each sampling is the same (in our cases all boards have

same difficulty)

3. Alternative Hypothesis (H
1
): the means of different sampling are different (there are differ-

ences among the difficulties of different boards)
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Initially the test is designed based on the premise that the variable follows a normal distribution.

So far we have no clue about the distribution law of our variable (although later on we will discuss

this point), so we can have some doubt about the applicability of the test. Nevertheless as this

situation is quite normal, there are literature (see GLASS et al. 1972) about the robustness of the

test and the resilience of the results even in case of the failure of the premises.

Before getting into the details of the method and the results, we can conclude that the differ-

ences of the difficulty amongst boards are significant enough, rejecting the null hypothesis that all

boards have the same level of difficulty.

This results is quite aligned with our first approach of the results of our sample, when we saw

that the standard deviation was about 10% of the mean value. The present test just confirmed our

initial suspect with a scientific method that allows us to ensure that some combinations are more

difficult than others.

4.2 Description of ANOVA method

Now let’s try to explain how the method works. The main idea is based on identify the sources of

variation amongst samples (boards). The total variation (as the sum of the squares of the deviation

of each measurement from the grand mean) is expressed as a variance:

TotalV ariation = V =

jk∑
i=1

(xi − X̄)2

Where j represents each board and k a specific measure of a board.

It can be proved (we will follow SPIEGEL (1999) Chapter 16 – Analysis of Variance for the

rest of this explanation) that total variation can be written as the sum of Vw (variation of the

distance of each path in a board regarding the mean distance of this board) and Vb (the variation

of the mean distance of each board mean regarding the global mean distance).

V = Vw + Vb

We can consider each measurement from board j as the result of adding to the mean of this board

Zj a chance factor εjk

Xjk = εjk + Zj

Let Z be the global mean.

αj = Zj − Z

Than we arrive to

Xjk = Y + αj + εjk

The null hypothesis implies all boards have equal difficulty (mean) son α1 = α2 = . . . = αj = 0

Therefore H0 implies Yj = Y for all j.

It can be demonstrated that

1. Vw

σ2 is χ2 distributed with a(b-1) degrees of freedom

2. And additionally under the null hypothesis Vb

σ2 and V
σ2 are χ2 distributed with (a-1) and

(ab-1) degrees of freedom.
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Where χ2 represents the distribution of the addition of independent standarized squared variables.

In our case this variable is the difference between the difficulty of each single path in a board and

the mean difficulty of this board

Let’s define a as the number of boards and b as the number of distances (measurement) in each

board

So using estimators of the variance of each board based on variation previously defined

S2
w =

Vw
a(b− 1)

S2
b =

Vb
a− 1

E(S2
b ) = σ2 +

b

a− 1

j∑
i=1

αj

If the null hypothesis H0 is not true we can expect S2
b be greater than σ2 while S2

w will be σ2 if

the means are equivalent.

The ratio
S2
b

S2
w

it is a good statistic to prove the Ho. If the statistic is significantly large, we can

conclude there are differences amongst board variances (due to αi not null).

The theorem that ensure that
S2
b

S2
w

follows a F distribution with a-1 and a(b-1) degrees of freedom

will provide use with the ANOVA test result.

EXCEL (and XLSTAT) will provide the library to develop a ANOVA test (Analysis of the variance

of one factor).

Variance

Analysis

Source of

variance

Sum of

squares

Freedom

degrees

Average

of squares
F Probability

Critical

value of F

Intragroup 2213,075 69 76,31293 34,9977 2,90E-182 1,46777

Intergroup 84712,9166 28850 2,18051

Total 86925,9916 28919

Table 2: Label: In this table we observe the results of the ANOVA analysis

Since we obtain that F = 34,99 which is much bigger than 1,46 (critical value) the null hypothesis

can be rejected and the difference between difficulty of boards is proven.

4.3 Board frequency distribution

Although I had already an answer for my research question, as a further step I decided to analyze

the frequency distribution of the distances of all different paths in a board. Additionally the fact

that our conclusion is based on ANOVA analysis, one of its premises is not ensured -the normal

distribution- reinforces the interest of identify which type of distribution follows the board diffi-

culty.

With this purposes, I have used Distribution Analysis, a statistical technique that allows you to

identify the best fitted distribution pattern for the sample data.

The underlying concept in this technique is to compare the frequency distribution observed with

the one which results from a theoretical (expected) distribution and determine if the differences

are significant enough. Usually the test is done with cumulative frequencies.
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I do not have any clue of the candidate to compare our sample results, and it would be a long

and complex process to compare with all possible distributions. Fortunately, statistical software

as XLSTAT provides us with tools to make the comparison with main statistical distributions in

a very short period of time, and this is what I will use. (The results of the individual test for each

board are not plotted as there are too many information and would not be relevant for our purpose.

We will work with the result of the distribution of the average of all the board sample -see Annex-).

As a result of the analysis, nearly all boards in the sample present a Poisson distribution with

mean in [3-4] range. Let’s try to find an explanation to that finding. As we have studied in the

IB syllabus, a Poisson distribution is a limit case of a binomial distribution when the number of

trials becomes very large (tends to infinite) and the probability of success is small. A binomial

distribution describes the action of choosing between two options (each one with its complementary

probability) several times. If we analyze this game from a new perspective, we can find similarities

to these probability distributions.

Let’s imagine a concrete path from a cell a to a cell b. So our variable will be the number of

steps we need to arrive to the cell b. In every additional step, we have a probability to have arrived

to b, and a probability that we can’t arrive there yet. So the probability of success in each step

is the product of binomial distributions (arrived - not arrived) where the probability of each step

increases as the number of intermediate points increases as the number of steps.

Figure 3: Graphical representation of the probability of distances regarding the number of steps

So, it resembles a Poisson approach as a limit cases of a binomial distribution (with a low prob-

ability of success in first step). The main difference is the increasing probability of success as

the number of steps increases (due to the new paths added at each step). My calculation of the

increase of probability (P1 to P2) results on a non-significant variation, that will be reflected on

the graphs that will be shown in next section.

Once we have justified the Poisson distribution, let’s try to figure out the value of the mean

[3-4]. The whole board is composed of 36 nodes, and each one of them is linked to 10 other nodes.

So from the initial node we can eventually move to 10 nodes (5 horizontally + 5 vertically) in the

first move and 9 (bearing in mind there is nonsense to return to the previous node). A first glance

of how many steps are required to link two nodes could be simply the ratio of number of nodes

to be fulfilled (36) by the number of nodes accessible in each step (9 except 10 in first step), that

results in 3,88 steps as average.

This result is consistent with the average (3,43) we have found in our sample of 76 boards (see graph

below), and the difference is not statistically significant. This approach is clearly a simplification
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but a quite straight form to justify the mean of the Poisson distribution we have found.

4.4 Data Analysis

We have already seen with the ANOVA test that all boards are not equivalent in terms of difficulty

but lets try to find more information about the difficulties in the different boards.

We will first plot some results in a graphical way, so we can notice that the distribution of average

distance of the board sample paths has a clear concentration in the range [2,6] steps, where all

the paths above distance 6 represent less than 5 percent of total, with a huge concentration in the

range [2-4]. In orange we have plotted a Poisson distribution (with the same mean that we have

found in previous section) just to see in a more graphical way the results we obtained in the Board

Frequency Distribution.

Figure 4: This graphic shows the relative distribution of the average distance of boards: in blue

we have the observed frequency, and in orange the expected one (Poisson distribution)

Figure 5: This graphic shows the cumulative frequency of the average distances of boards: in blue

we have the cumulative observed frequency, and in orange the cumulative expected one (Poisson

distribution)

In fact, the board Mean Distance distribution has a narrow range [3-4] with some exceptions

(one of them with Mean above 5 could be considered as an outlayer). As we can notice from

a visual inspection, our reasoning about the Poisson behaviour of distance distribution is clearly

verified in this comparative graph. We have not done any statistical analysis of the differences

between observed and expected values, but we can anticipate the differences are not significant to

reject our reasoning.

So as a first analysis, we can see the different boards have a mean distance quite similar [3,4] The

game is designed in a way that most of the challenges (calculate the distance between points) can

be solved in an easy way (implying 4 or less steps). The concentration of distances around mean

and the skewness is part of the success of the game: 3 - 4 steps make it neither so easy to be bored
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nor so difficult to discourage the players.

Further analysis of the results provided another curious curious property which I plot down here.

Figure 6: This graphic shows how does the VMR change when the mean increases

We can observe there is a positive relationship between Board Mean Distance and Board Vari-

ance (we used Variance Mean Ratio -VMR- as the ratio between variance and mean in each board

in order to normalize the data and make all the boards comparable). Although it is not directly

related to the work, it’s more information that can perhaps help has take some conclusions.

After this first approach, I have analyzed the distributions of each board and the combined distri-

bution of all boards in a more detailed way to be able to obtain as much conclusions as I could

about my topic.
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5 Conclusions

As a first conclusion, and answering to my initial question, I have finally concluded that there are

differences between the boards in terms of difficulty.

Once answering the initial question, let’s put together a list of different findings that we have

been obtaining throughout the work. First of all, you must remember that since we have used

sample theory with level of confidence 95 percent and significant error less than 10 percent all our

conclusions are statistically sound.

• The different boards do not have the same difficulty level. The variance that we have cal-

culated denies the hypothesis that all boards have the same variance. We have confirmed

the intuition that we can have after looking at the results of our sample (Table 1) with the

outcomes of ANOVA test (Table 2).

• The mean difficulty of all boards is in a narrow range [3,4], so they are similar.

• The distribution of path difficulty for each board follows a Poisson distribution.

• The mean difficulty of the boards also follows a Poisson distribution.

Referring to conclusion 3, the Poisson distribution, we will recall the argument we have stated

before in the Board Frequency Distribution.

We can conclude that although there are differences each time you play with different boards, in

the long term, playing several times, the difference vanishes becoming all plays quite are similar:

there is no specific a priori rule to determine for a specific board if it will be more or less difficult.

What you can expect is quite regular in terms of difficulty, and probably this is one of the main

virtues of the game.

5.1 Further work

My work has focused on basic theory (graph, statistics, sampling). When I reached my conclusions,

I had the opportunity to discuss this work with Dr Sergio Gómez, an specialist in networks working

currently at University Rovira i Virgili. He opened me to leading-edge research in the field of

networks, specifically the problem of communicability, a concept quite aligned with my work, and

that I had not discovered at the moment when he told me.

Communicability is defined as the shortest path connecting nodes, and in general terms, as a

measure of the ability of a network to connect nodes. Immediately I understood this technique

could be applied to my work and it is my intention to follow on both in this area and with a more

detailed analysis of the different board complexity to identify pattern in the construction of the

boards. Although I do not have space to continue with this research on this assessment, it is a

very interesting point from where to continue in future projects related with this topic.
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7 Annex

7.1 Statistical calculus

Mean = X =

∑
xi
n

Deviation =
2

√∑
(xi −X)2

n

newline

Results of the distribution analysis (provided by XLSTAT) to know what kind of distribution

best fits the difficulties of 72 different boards of our sample.

Distribución valor-p

Binomial negativa(1) 0,000

Binomial negativa(2) 0,009

Exponencial 0,031

Fisher-Tippett(1) 0,033

Fisher-Tippett(2) 0,394

Gamma(1) 0,000

Gamma(2) 0,622

Gumbel 0,000

Log-normal 0,692

Loǵıstica 0,172

Normal 0,242

Normal(estándar) 0,000

Poisson 0,911

Student 0,000

Weibull(1) 0,000

Weibull(2) 0,602

Table 3: Results of the different board distributions
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7.2 Program

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

class Peca(object):

def init(self,llista):

self.caselles = llista

self.orientacio = ’N’

def dalt(self):

if self.orientacio == ’N’:

return self.caselles[0:3]

elif self.orientacio == ’E’:

return [self.caselles[6],self.caselles[3],self.caselles[0]]

elif self.orientacio == ’O’:

return [self.caselles[2],self.caselles[5],self.caselles[8]]

else:

return [self.caselles[8],self.caselles[7],self.caselles[6]]

def migh(self):

if self.orientacio == ’N’:

return self.caselles[3:6]

elif self.orientacio == ’E’:

return [self.caselles[7],self.caselles[4],self.caselles[1]]

elif self.orientacio == ’O’:

return [self.caselles[1],self.caselles[4],self.caselles[7]]

else:

return [self.caselles[5],self.caselles[4],self.caselles[3]]

def baix(self):

if self.orientacio == ’N’:

return self.caselles[6:9]

elif self.orientacio == ’E’:

return [self.caselles[8],self.caselles[5],self.caselles[2]]

elif self.orientacio == ’O’:

return [self.caselles[0],self.caselles[3],self.caselles[6]]

else:

return [self.caselles[2],self.caselles[1],self.caselles[0]]

def esquerra(self):

if self.orientacio == ’N’:

return [self.caselles[0],self.caselles[3],self.caselles[6]]

elif self.orientacio == ’E’:

return self.caselles[6:9]

elif self.orientacio == ’O’:

return [self.caselles[2],self.caselles[1],self.caselles[0]]

else:

return [self.caselles[8],self.caselles[5],self.caselles[2]]

def migv(self):

if self.orientacio == ’N’:

17



return [self.caselles[1],self.caselles[4],self.caselles[7]]

elif self.orientacio == ’E’:

return self.caselles[3:6]

elif self.orientacio == ’O’:

return [self.caselles[5],self.caselles[4],self.caselles[3]]

else:

return [self.caselles[7],self.caselles[4],self.caselles[1]]

def dreta(self):

if self.orientacio == ’N’:

return [self.caselles[2],self.caselles[5],self.caselles[8]]

elif self.orientacio == ’E’:

return self.caselles[0:3]

elif self.orientacio == ’O’:

return [self.caselles[8],self.caselles[7],self.caselles[6]]

else:

return [self.caselles[6],self.caselles[3],self.caselles[0]]

p1 = Peca([’5P’,’2P’,’3P’,’6R’,’4R’,’3Y’,’4B’,’5G’,’3G’])

p2 = Peca([’1Y’,’5R’,’1G’,’6Y’,’5B’,’1R’,’1P’,’5Y’,’6P’])

p3 = Peca([’5W’,’4G’,’3B’,’3W’,’4Y’,’3R’,’2B’,’6B’,’6W’])

p4 = Peca([’4P’,’2W’,’2Y’,’6G’,’2G’,’1W’,’4W’,’2R’,’1B’])

class Taulel (object):

def init (self,llistapeces,llistaor):

self.peces = llistapeces[:]

for i in range(len(llistapeces)):

self.peces[i].orientacio = llistaor[i]

def
repr(self):

fila1 = cadena(self.peces[0].dalt() + self.peces[1].dalt())

fila2 = cadena(self.peces[0].migh() + self.peces[1].migh())

fila3 = cadena(self.peces[0].baix() + self.peces[1].baix())

fila4 = cadena(self.peces[2].dalt() + self.peces[3].dalt())

fila5 = cadena(self.peces[2].migh() + self.peces[3].migh())

fila6 = cadena(self.peces[2].baix() + self.peces[3].baix())

return fila1 + fila2+ fila3+ fila4+ fila5+ fila6

def columna(self,n):

if (n==1):

return cadena1(self.peces[0].esquerra() + self.peces[2].esquerra())

if (n==2):

return cadena1(self.peces[0].migv() + self.peces[2].migv())

if (n==3):

return cadena1(self.peces[0].dreta() + self.peces[2].dreta())

if (n==4):

return cadena1(self.peces[1].esquerra() + self.peces[3].esquerra())

if (n==5):

return cadena1(self.peces[1].migv() + self.peces[3].migv())

if (n==6):

return cadena1(self.peces[1].dreta() + self.peces[3].dreta())

def fila(self,n):
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if (n==1):

return cadena1(self.peces[0].dalt() + self.peces[1].dalt())

if (n==2):

return cadena1(self.peces[0].migh() + self.peces[1].migh())

if (n==3):

return cadena1(self.peces[0].baix() + self.peces[1].baix())

if (n==4):

return cadena1(self.peces[2].dalt() + self.peces[3].dalt())

if (n==5):

return cadena1(self.peces[2].migh() + self.peces[3].migh())

if (n==6):

return cadena1(self.peces[2].baix() + self.peces[3].baix())

def graph (taulel):

p = []

for i in range(1,7):

p += taulel.fila(i).split()

g =nx.Graph()

g.addnodesfrom (p)

for i in range (6):

f = taulel.fila(i+1).split()

for x in range (5):

n = f[x][0]

c = f[x][1]

for j in range (x+1,6):

if n==f[j][0]:

g.addedge(f[x], f[j])

if c==f[j][1]:

g.addedge(f[x], f[j])

for i in range (6):

col = taulel.columna(i+1).split()

for x in range (5):

n = col[x][0]

c = col[x][1]

for j in range (x+1,6):

if n==col[j][0]:

g.addedge(col[x], col[j])

if c==col[j][1]:

g.addedge(col[x], col[j])

return g

def esgroc(x):

return ’Y’ in x

def esvermell(x):

return ’R’ in x

def esrosa(x):

return ’P’ in x

def esverd(x):

return ’G’ in x
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def esblanc(x):

return ’W’ in x

def esblau(x):

return ’B’ in x

def dibuixa (graf):

vermells = list(filter(esvermell,graf.nodes()))

grocs = list(filter(esgroc,graf.nodes()))

verds = list(filter(esverd,graf.nodes()))

roses = list(filter(esrosa,graf.nodes()))

blaus = list(filter(esblau,graf.nodes()))

blancs = list(filter(esblanc,graf.nodes()))

pos = nx.circularlayout(graf)

nx.draw(graf,pos,withlabels = True)

nx.drawnetworkxnodes(graf,pos,nodelist=grocs,nodecolor =′ y′)

nx.drawnetworkxnodes(graf,pos,nodelist=vermells,nodecolor =′ r′)

nx.drawnetworkxnodes(graf,pos,nodelist=blaus,nodecolor =′ b′)

nx.drawnetworkxnodes(graf,pos,nodelist=verds,nodecolor =′ g′)

nx.drawnetworkxnodes(graf,pos,nodelist=roses,nodecolor =′ m′)

nx.drawnetworkxnodes(graf,pos,nodelist=blancs,nodecolor =′ w′)

plt.show()

def matriu (graph):

m = nx.adjacencymatrix(graph)

m= m.todense()

return m

def passos(m): trobat = False matriuinicial = mn = 0whilenottrobat : n+ = 1foriinrange(36) :

if0inm.tolist()[i] : breakelse : returnnm = sum([matriuinicial ∗ ∗iforiinrange(n)])

def cadena (llista):

string=”

for element in llista:

string+=(element + ’ ’)

string+=”

return string

def cadena1 (llista):

string=”

for element in llista:

string+=(element + ’ ’)

return string.strip()

def dificultat (morig): Aux=np.full((36,36), False, dtype=bool)

a= [] b=0 l=[] power = 1 while not np.all(Aux):

b = 0

m = np.linalg.matrixpower(morig, power)

for i in range(36):

for j in range(36):

if m[i,j] != 0 and Aux[i][j] == False:

Aux[i][j]= True

l.append(power)

power += 1
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a.append(b)

print (l)

if name == ’main’:

T = Taulel ([p1,p2,p3,p4],[”N”, ”N”, ”N”, ”N”])

G = graph(T)

print(dificultat (matriu (G)))

np.setprintoptions(threshold=np.nan)
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