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1. Introduction

This is the edited text of a talk given at the Facultat de Matemàtiques
i Estadística of UPC on February 20th, 2008, in the framework of the
�Jornada Riemann�.

In preparing the text I have endeavored to avoid or minimize repetitions
of material that appears in other contributions. I have also tried to keep
the text as simple as possible, in accordance with the style of the talk
and the open and lively discussions held during the event.

Before entering the subject proper of this work, let me summarize a
few re�ections on Riemann's life and work that I �nd relevant for a
deeper understanding of the signi�cance of his legacy.

Left: the scientist as a young man; Right: a classical picture.
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Bernhard Riemann died very young, like other geniuses of the 19th
Century, but he left an impressive legacy to Mathematics, pure and
applied. He had a permanent love for Italy, where he traveled for health
reasons, but where he also had friends that continued his deep ideas.
Besides Mathematics, Riemann had a sustained interest in Philosophy
and in Physics.

An easy source for his mathematics is the collection of his works, [12],
which has translations to several languages. His life is described in
Detlef Laugwitz's book [7], and I have used M. Monastyrsky's [10]. I
have found very useful Ferreirós' �Riemanniana Selecta� [5], in Spanish.
Besides that, Internet is a very convenient source of details, and I have
consulted Wikipedia, MacTutor, Encyclopaedia Britannica, and other
Internet archives.

Riemann had a philosophical formation, and as such he sustains that
the essence of Reality lies in a hidden world. That is not really new;
medieval scholars would say that Videmus in aenigmata, et per specu-
lum.

In his century Riemann was not alone in seeing the key to understand-
ing the hidden reality of the World in the Concepts and Formulas of
Abstract Mathematics, or in the original German, in die Begri�e und
Formeln der Höhere Mathematik.

So maybe we can see here a new look for old ideas. Indeed, the look is
not only new, it will prove to be revolutionary.

In keeping with his philosophical frame of mind, and also because of
his short life, his work is deep in concepts and ideas, but rather scarce
in details. A century and a half of research has provided answers and
details to a large number of the topics treated in his complete works,
but not to all: remember the Riemann hypothesis!

2. Mathematics, Physics and PDEs

2.1. PDEs and the origins of di�erential calculus. The Di�eren-
tial World, i.e, the world of derivatives, was invented, or discovered as
you may prefer to see it, in the 17th Century, almost at the same time
that Modern Science (then called Natural Philosophy), was born. We
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owe it to the great Founding Fathers: Galileo, Descartes, Leibnitz and
Newton (mainly). Motivation came from the desire to understand the
World around us, more speci�cally Motion, Mechanics and Geometry.

Newton formulated Mechanics in terms of ODEs, by concentrating on
the movement of particles. The main magic formula is

m
d2x

dt2
= F (t,x,

dx

dt
)

though he would write derivatives with dots, and not as quotients,
which is Leibnitz style. Here are the magical words, to which we are
now so used: mass (m), force at a distance (F ), and acceleration, and
here is where the (second) derivative enters the picture.

Newton thought about �uids, in fact he invented Newtonian �uids,
and there you need dependence on space and time simultaneously, x as
well as t. It involves the partial derivatives, which means that we get
Partial Di�erential Equations (PDEs for short). But his progress was
really small if you compare it with the rest of Principia Mathematica
Philosophiae Naturalis, 1687, and other works of the early Calculus
time.

We conclude that there was not much time for PDEs from the Big
Bang to 1700 AD.

In the 18th Century, PDEs appear in the work of Jean Le Rond D'Alem-
bert about string oscillations: there a set of particles moves together
due to elastic forces, but every one of the in�nitely many solid elements
has a di�erent motion, u = u(x, t). This is one of the �rst instances
of continuous collective dynamics. PDEs are the mode of expression of
such CCD.

Johann and Daniel Bernoulli and then Leonhard Euler lay the founda-
tions of Ideal Fluid Mechanics (1730 to 1750), in Basel and St Peters-
burg. This is PDEs of the highest caliber:

∂u

∂t
+ u · ∇u +∇p = 0, ∇ · u = 0.
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The system is nonlinear; it does not �t into one of the three main types
that we know today (elliptic, parabolic, hyperbolic); the main pure-
mathematics problem is still unsolved (existence of classical solutions
for good data; Clay Problems, year 2000).

2.2. Modern times: PDEs in the 19th Century. The 19th Cen-
tury confronts revolutions in the concept of heat and energy, electricity
and magnetism, and also in the very concept of space. The Newtonian
edi�ce begins to shake. You may add a lesser revolution, real �uids.

Mathematically, all of these �elds take up the form of PDEs:

(i) Heat leads to the heat equation, ut = ∆u, and the merit goes
primarily to J. Fourier.

(ii) Electricity leads to the Coulomb equation in the Laplace-Poisson
form: −∆V = ρ. Surprisingly, this equation also represents gravita-
tion! (with a di�erence, for electricity the right-hand side may have
two signs).

(iii) Electromagnetic �elds are represented by the Maxwell system. The
vector potential satis�es a wave equation, the same as D'Alembert's
(but now it is vector-valued and in several dimensions).

(iv) Real �uids are represented by the Navier-Stokes equations. Sound
waves follow wave equations, but they can create discontinuous solu-
tions called shocks (and here Riemann appears as we will see).

2.3. PDEs continued in the 19th Century. Geometry was trans-
formed from the Euclid tradition plus Cartesian Algebra to the spirit
of PDEs by G. Gauss and B. Riemann. The new spirit is condensed
in a number of key words. Space is determined by its metric which is
a local object that has tensor structure. The connection from point
to point is a new object called covariant derivative, the curvature is a
second order operator, a nonlinear relative of the Laplace operator.

After the work of these people, in particular Riemann, Reality is seen
as mainly continuous, and its essence lies in the physical law, that is a
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law about a �eld or a number of �elds. In symbols, we have Φ(x, y, z, t)
and an equation (or system)

LΦ = F,

where F is the force �eld (a tensor).

2.4. 20th Century. Summing Up. In the 20th Century General
Relativity and Quantum Mechanics take this same form. Space, matter
and interactions become �elds.

A main variant from the scheme is Statistical Mechanics, a thread that
leads to Brownian motion (Einstein, Smoluchowski), abstract proba-
bility (Kolmogorov, Levy, Wiener), stochastic calculus and stochastic
di�erential equations (It	o).

Summing up in a rather succint form: the main (technical) task of the
Mathematician working in Mathematical Physics is to understand the
world of Partial Di�erential Equations, linear and nonlinear.

The same is true nowadays for geometers (you only need to travel to
the Universitat Autònoma of Barcelona and attend the now running
CRM semester on Ricci �ows!).

The main abstract tool is Functional Analysis. The combination of
Functional Analysis, PDES and ODEs, Geometry, Physics and Sto-
chastic Calculus is one of the Great Machines of today's research, a
child of the 20th Century.

3. Riemmann, complex variables and 2-D fluids

In the sequel we will try to convey some of the mathematics of B. Rie-
mann that had a profound impact on PDEs, with attention to speci�c
concepts and calculations. In other words, let us do some math!

3.1. Complex Variables (Euler, Cauchy, Gauss, Riemann, Weier-
strass). We start with a function

u(x, y) = u(z), z = x+ iy = (x, y)

that is supposed to be a good function of two real variables.
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• A good function of two real variables means (could mean) u ∈ C1(Ω)
for some subdomain Ω of R2.

• Therefore, u has a gradient: ∇u(z0) = (ux, uy).

• But, what is a good function of one complex variable?

• First of all, to keep the symmetry, there must be two real functions
of two real variables:

u = u(x, y), v = v(x, y)

which we write as f = f(z) with f = u+ iv, and z = x+ iy.

• The question is: Do we ask that f ∈ C1 and that is all? The answer
is no and this is a consequence of algebra.

• Let us explain why: very nice real functions of one variable are
polynomials, and very nice complex functions of one complex variable
should also be polynomials.

• Now, polynomials are easy to de�ne, for instance f(z) = z2 means

u = x2 − y2, v = 2xy

while f(z) = z3 means

u = x3 − 3xy2, v = 3x2y − y3.

• Can the reader do f(z) = zn by heart? Euler could! In fact, Euler
and Moivre could see the whole trigonometry (by using the polar form
z = reiθ and expanding the power zn).

• Can you see something special in these pairs of functions, u and v?
Cauchy and Riemann could! They saw the whole theory of complex
holomorphic functions.

3.1.1. The PDE code for complex variables. What they saw is
this hidden symmetry:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.
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These equations are called Cauchy-Riemann (CR) equations for com-
plex variables. They are one of the most important examples of a PDE
system with extraordinary geometric and analytic consequences.

•We see that ∇u = (a,−b) is orthogonal to ∇v = (b, a). Consequence:
the level lines u = c1 and v = c2 are orthogonal sets of curves.

• The linear algebra of in�nitesimal calculus at every point is not 4-
dimensional but two-dimensional. In fact, the system

du ∼ adx− bdy, dv ∼ bdx+ ady,

can be written together in the complex form df ∼ Jf(z) dz, where
Jf is the Jacobian matrix that we begin to call f ′(z) = a+ ib.

• We will assume from such glorious moment on that this is the correct
derivative of a 2-function of 2 variables that is a candidate to be a good
complex di�erentiable function.

3.1.2. Complex Variables, analysis and geometry. Hence we know
some magic formulas:

f ′(z) = a+ bi = fx, fy = −b+ ai = if ′(z).

Thus df = f ′dx along the x-axis and df = if ′dy along the y axis.

Comming back to the Jacobian,

Jf(z) =

(
ux uy
vx vy

)
=

(
a −b
b a

)
= a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)
= aE + bJ.

This is a similarity matrix with determinant

det(Jf) = a2 + b2 = u2
x + u2

y = u2
x + v2

x = v2
x + v2

y = u2
y + v2

y ,

which can be written as

|Jf | = |f ′(z)|2 = ‖fx‖2 = ‖fy‖2 = ‖∇u‖2 = ‖∇u‖2.
The in�nitesimal transformation preserves the angles (of tangent curves)
and scales the size by Jf = |f ′(z)|2.

If the 2-2 function f is CR, then it de�nes a conformal transformation
of the part of the plane where f ′(z) 6= 0. Riemann's geometric theory
of one complex variable is based on this idea!



146 JUAN LUIS VÁZQUEZ

3.1.3. Complex Variables and PDEs. Solving the equations.
Potential theory. Once we enter that framework, the question is:
how to �nd pairs of functions satisfying CR?

Of course, real and imaginary parts of algebraic complex functions
satisfy CR. The Taylor Series, typical of the Cauchy�Weierstrass ap-
proach, also satis�es CR.

But PDE people want their way. Here is the wonderful trick:

∆u = uxx + uyy = vyx + (−vx)y = 0.

Idem ∆v = 0. Solutions of this equation are harmonic functions, and
they count among the most beautiful C∞ functions in analysis and
among the most important in physics, where solving ∆u = −ρ means
�nding the potential of ρ, where ρ is a volume distribution of mass or
of electric charge.

Note a novelty full of promise: harmonic functions live in all dimen-
sions, not just two. But in d = 2 they produce complex holomorphic
functions. Given u, we �nd v, its conjugate partner, by integration of
the di�erential form

dv = Pdx+Qdy, with P = vx = −uy, Q = vy = ux.

This is an exact di�erential thanks to CR.

3.2. Complex Variables and ideal �uids in d = 2. Recall that
Riemann was a friend of Weber, the famous physicist.

The velocity of a 2-D �uid is a �eld v = (v1(x, y), v2(x, y). Irrotational
means that ∇×v = 0. Incompressible means ∇·v = 0. For the PDE
person this is easy:

v2,x − v1,y = 0, v1,x + v2,y = 0.

Does this look like what we saw in the previous subsection? Yes, com-
bining both we get ∆v1 = ∆v2 = 0.

Is v2 harmonic conjugate to v1? No, but −v2 is.

Idea to eliminate sign problems. Go to the scalar potential of the vector
�eld v:

dΦ = v1dx+ v2dy
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(it is exact by irrotationality). Take the harmonic conjugate Ψ and
de�ne the complex potential of the �ow as F = Φ + iΨ, a complex
holomor�c function. In that case

F ′(z) = Fx = Φx + iΨx = Φx − iΦy = v.

Consequence: v = v1 − iv2 is a complex holomorphic function.

3.3. Some Pictures of 2D glory. The following pictures come in
every book about two-dimensional perfect �uids and conformal trans-
formations. We ask the reader to identify them as a linear �ow, a
dipole con�guration, a source-sink combination, and lastly the famous
streamlines for the planar �ow around an obstacle. This complex vari-
able theory stands at the core of the science of aerodynamics.

3.4. Summary. The big picture in 2D.

• There is an equivalence between holomorphic complex variable
theory ⇔ conformal geometry ⇔ harmonic functions ⇔ ideal
�uids.
• Any two dimensional ideal �uid generates an analytic function,
and conversely, and it is a conformal mapping, and viceversa.
• The complex derivative of the complex potential is just the
conjugate of the velocity �eld.
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• The stream function Ψ indicates the lines of current via the
formula Ψ = c.
• What happens when F ′(z) = 0, i.e., when v = 0? These are
singular points, called in physics the stagnation points. Many
things can happen on a singularity, but essentially only one
thing may happen on a regular point, where the implicit func-
tion theorem is valid. Riemann was an expert in singular points.

4. Riemmann and the equations of geometry

4.1. From 2D to 3D. Riemann was able to understand very well
the Two-Dimensional Space with its functions, analysis, geometry and
physics.

It is not as easy as it seems because complex holomorphic functions
try to follow their name and be globally de�ned, actually they have
analytic continuation. But they may have singularities blocking their
way to global (global is called here entire).

Riemann's main contribution to 2D analysis+geometry is the concept
of Riemann surface (RS) with the curious branching points. A simple
Riemann surface may be a part of R3 but more complicated RS live in
a very strange situation, a di�erent world.

But we want now to forget 2D and remember that we live in 3D. Think-
ing about the geometry of 3D is an old pastime, masterfully encoded
by Euclid of Alexandria (325 BC-265 BC).

The 3D world is much more complicated that 2D and no part of the
equivalence between analysis, Taylor series, elementary PDEs, confor-
mal geometry and ideal Physics survives.

4.1.1. What is Geometry according to Riemann. Let us follow
the Encyclopædia Britannica article on B. Riemann.

In 1854 Riemann presented his ideas on geometry for the o�cial post-
doctoral quali�cation at Göttingen; the elderly Gauss was an examiner
and was greatly impressed.
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Riemann argued that the fundamental ingredients for geometry are
a space of points (called today a manifold) and a way of measuring
distances along curves in the space.

He argued that the space need not be ordinary Euclidean space and that
it could have any dimension (he even contemplated spaces of in�nite
dimension). Nor is it necessary that the surface be drawn in its entirety
in three-dimensional space. According to Riemann, many spaces are
possible. This happened more than four decades before Relativity!

It seems that Riemann was led to these ideas partly by his dislike of
the (Newton's) concept of action at a distance in contemporary physics
and by his wish to endow space with the ability to transmit forces such
as electromagnetism and gravitation.

A few years later this inspired the Italian mathematician Eugenio Bel-
trami to produce just such a description of non-Euclidean geometry,
the �rst physically plausible alternative to Euclidean geometry. More
italians in�uenced by B. Riemann: Ricci, Levi-Civita, Bianchi.

4.1.2. Habilitationsvortrag, 1854. Riemannian Geometry. This
is one of the most famous and in�uential habilitation documents in the
history of Mathematics.

Space around only has a de�nite sense locally around the place. The
basic tool to do geometry is the metric, which is given by

ds2 =
∑

gijdx
idxj

It is local since it works on local entities, tangent vectors. Forget
Pithagoras but remember ds2 = dθ2 + sin2 θ dφ2 on the sphere.

The metric �eld changes from point to point, gij(x), x is locally a set
like Rd. He even says that for a space of functions d can be in�nite.

So there is no sense in principle of parallel vectors (at least if we do not
work more). We can instead de�ne the derivative of a tangent vector
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X =
∑

i aiei when we move along another vector Y =
∑

j bjej. This is
the famous covariant derivative ∇:

∇YX =
∑
i

Y (ai)ei +
∑
ijk

aibjΓ
k
ijek.

which depends on a set of functions Γkij, the so-called Christo�el sym-
bols. For the correct covariant derivative, called Levi-Civita connec-
tion, the Christo�el symbols are given by

Γkij =
1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
.

Objects with several indices are usually tensors. Note that although
the Christo�el symbols have three indices on them, they are not ten-
sors. Sorry, local coordinates are intuitive but messy to work with, this
really cumbersome aspect of modern geometry is also part Riemann's
inheritance!!

4.1.3. Curvatures at the center of geometry. The covariant de-
rivative opens the way to a whole new Di�erential Calculus, where
curvature tensors and Laplacians play a key role.

Curvature tensor. The Riemann curvature tensor is given by

R(X, Y, Z) = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z.

In that case we have

Ri
jkl =

∂Γijk
∂xl
−
∂Γijl
∂xk

+ ΓsjkΓ
i
sl − ΓsjlΓ

i
sk.

Contraction gives the low tensor Rijkl = gimR
m
jkl. Wikipedia gives

Riklm =
1

2

(
∂2
klgim + ∂2

imgkl − ∂2
kmgil − ∂2

ilgkm+
)

+ gnp(Γ
n
klΓ

p
im + ΓnkmΓpil).

Ricci curvature. The Ricci curvature of g is a contraction of the
general curvature tensor:

Rij =
∑
j

Rs
isj =

∑
s,m

gsmRisjm
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The Ricci tensor has the same type (0, 2) (twice covariant) of the metric
tensor. In coordinates we have (Nirenberg's sign, Wikipedia)

Rij =
∂Γlij
∂xl
− ∂Γlil
∂xj

+ ΓlijΓ
m
lm − Γmil Γ

l
jm.

4.1.4. The Laplacian operator in such geometries. Here is the
de�nition of the geometer's Laplacian (Laplace�Beltrami operator):

∆g(u) = −gij(∂iju− Γkij∂ku) = − 1

|g|1/2
∂i(|g|1/2gij∂ju).

This is minus the contraction of the second covariant derivative tensor

(∇2u)ij = ∂iju− Γkij∂ku.

A coordinate chart (xk) is called harmonic chart if and only if ∆gx
k =

0 for all i. Note that

∆g(x
k) = −gijΓkij.

Therefore, (xi) is harmonic i� gijΓkij = 0 for all k.

The Laplacian is convenient for doing analysis and PDEs on manifolds
because the basic integration by parts formula∫

M

(∆gu) v dµ+

∫
M

〈∇gu,∇gv〉dµ = 0

makes sense if you use the correct de�nitions.

4.1.5. Yamabe problem. Ricci �ow. Like in the rest of disciplines
of Mathematics, the combination of di�erential geometry and PDEs has
given rise to clasical problems that have focused the interest of gener-
ations. We will comment here on two problems that have attracted
attention in the last decades.

• Yamabe Problem. Let g be a metric in the conformal class of a
metric g0. Let D denote the Levi-Civita connection of g. We denote by
R = Rg and R0 the scalar curvatures of the metrics g, g0, respectively.
Write ∆0 for the Laplacian operator of g0. Then we can write

g = u4/(n−2)g0
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locally on M for some positive smooth function u. Moreover, we have
the formula

R = −u−NLu on M,

with N = (n+ 2)/(n− 2) and

Lu = κ∆0u−R0u, κ =
4(n− 1)

n+ 2
.

Note that ∆0 − n−2
4(n−1)

R0 is the conformal Laplacian relative to the

background metric. Write equivalently, Rgu
N = R0u− κ∆0u.

The standard Yamabe Problem can be stated thus: given g0, R0 and
Rg, �nd u. This is a nonlinear elliptic equation for u.

An evolution version of the Yamabe problem leads to the so-called Fast
Di�usion Equation, ut = ∆um with exponent m = (n− 2)/(n+ 2) < 1.
The problem is described for instance in [17].

• Ricci �ow.The Ricci curvature features prominently in R. Hamil-
ton's program, 1982, to classify three dimensional manifolds by contin-
uous deformation of the original metric. This is a remarkable idea to
try to solve by PDE methods the old Poincaré conjecture (one of the
7 problems of the Clay list). The proposed �ow is

(4.1) ∂tgij = −Rij.

In view of the expression of Rij in terms of gij and its partial derivatives,
this turns out to be a system of nonlinear partial di�erential equations
for the evolution of the metric tensor gij. It is formally of parabolic
type, so Hamilton established for it maximum principles and Harnack
inequalities. But the program faced di�culties related to the blow-up
of solutions in �nite time

In 2002-03 G. Perelman posted three papers with a complete solution
of that problem, and this seems to be one of the main mathematical
events of the running century. In this way Riemann's legacy is more
present than ever before for the mathematical research community.

More details on this topic can be found in J. Porti's contribution in
this volume.
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4.2. General relativity. Einstein's equation. Riemann's ideas went
further and they turned out to provide the mathematical foundation
for the four-dimensional geometry of space-time in Einstein's theory of
general relativity.

The Einstein tensor G is a 2-tensor on pseudo-Riemannian manifolds
which is de�ned in index-free notation as

(4.2) G = R− 1

2
Rg,

where we use the following notations: R is the Ricci tensor, g is the
metric tensor and R is the Ricci scalar (or scalar curvature). In com-
ponents, the above equation reads

Gij = Rij −
1

2
Rgij,

and Einstein's �eld equations (EFE's) are:

Gij =
8πG

c4
Tij,

a system of second order partial di�erential equations in 4 variables.
The quantities Tij are the components of the stress-energy tensor, so-
called because it describes the �ow of energy and momentum.

5. Riemmann and the PDEs of Physics

5.1. Riemann's interest in Physics. The in�uence of the famous
experimental physicist W. Weber was important in Riemann's view of
mathematics. Apart from his contributions to the mechanics of air
waves, he was keenly interested in the contemporary developments,
and in teaching. Let us mention here the famous book [15]: Riemann's
lectures on the partial di�erential equations of mathematical physics
and their application to heat conduction, elasticity, and hydrodynam-
ics were published after his death by his former student, Hattendor�.
Three editions appeared, the last in 1882; and few books have proved
so useful to the student of theoretical physics. The object of Riemann's
lectures was twofold: �rst, to formulate the di�erential equations which
are based on the results of physical experiments or hypotheses; second,
to integrate these equations and explain their limitations and their ap-
plication to special cases.
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5.2. Paper �Über die Fortp�anzung...", 1860. The equations
of gas dynamics. Let us go back to creative science. Though Rie-
mann's fame is usually associated among mathematicians with pure
mathematics (Riemann's Hypotheses, Riemann surfaces, Riemannian
geometry), his contribution to applied science is fundamental in the
area of aerodynamics.

Let us present his contribution in a brief form. One-dimensional isen-
tropic gas �ow is a mathematical abstraction described by the system
of di�erential equations

(5.1)

{
ut + uux + px/ρ = 0,

ρt + (ρ u)x = 0

plus the algebraic equation p = p(ρ).

In applications x is interpreted as length along a tube, whose transver-
sal dimensions are supposed to be irrelevant, u is interpreted as �uid
particle speed and ρ as density. The equation p = p(ρ) is called equa-
tion of state and for ideal gases it takes the form p = Cργ where
γ = 1, 4. Evidence on the determination of this γ really worried Rie-
mann as he says at the beginning of his paper (he was not an absent-
minded theoretician!).

In a more modern style, we may write the equations in a compact way

(5.2) Ut + A(U)Ux = 0,

which encodes the system:

(5.3)

(
ut
ρt

)
+

(
u p′(ρ)/ρ
ρ u

) (
ux
ρx

)
=

(
0
0

)
.

5.2.1. Hyperbolic systems. In order to continue we do linear alge-
bra, calculating the eigenvectors and eigenvalues of the matrix A. We
obtain

λ1 = u+ c, λ2 = u− c
where c2 = p′(ρ) (c is called the speed of sound). Note that λ = λ(u, ρ),
hence it changes with (x, t) depending on the �ow you are solving at
this time.
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If ρ 6= 0 then c 6= 0 and we have two di�erent eigenvalues and we are
entering with Riemann into the theory of Nonlinear Hyperbolic Di�er-
ential Systems, still frightening today. Peter Lax, Courant Institute,
Abel Prize winner, is a world leader in the topic. See his monograph
[8].

We now get a map from (x, t) into (u, ρ), with two nice directions for
the linearization of the evolution equation,

Ut + A(U0)Ux = 0.

If you are Riemann, or you are able to follow his train of thought, this
allows you to construct some magical local coordinates where the �ow
is not complicated. Correct coordinates are Riemann's specialty.

5.2.2. Riemann invariants. The eigenvectors of the system are

U1 = (c/ρ, 1), U2 = (c/ρ,−1)

Now Riemann tells us to �nd the characteristic lines: if we think that
the solution is known, then solve the ODE Systems

dx

dt
= λ(x, t,U)

He tells you then to �nd functions F1, F2, called the Riemann in-
variants, which are independent and constant along the corresponding
characteristics. In the gas example they are

F± = u±
∫
c(ρ)

ρ
dρ.

Since these functions are constant on the characteristics, they allow to
see what the characteristics do and this says what the �ow does at any
moment. Replace (u, ρ) by F1, F2 and try to see something. The reader
can follow the detailed development in Chorin-Marsden [3] or Smoller
[16].

5.2.3. Shocks. The theory Riemann develops allows to solve the sys-
tem in a classical way if and only if the characteristics of the same type
for di�erent points do not cross. In that case the invariant takes two
values, a shock appears.
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Shocks appear in the examples even in d = 1, which is the Burger's
equation

ut + uux = 0.

Since it happens in the simplest nontrivial mathematics, Riemann con-
cludes that you cannot avoid shock formation, and that a theory of
solutions with discontinuities that propagate in some magical way is
needed. This is today the theory of shocks and discontinuous solutions
of conservation laws.

Very soon the physical community recognized this work as a funda-
mental new insight into the complexity inherent to compressible �uids.

Rankine and Hugoniot completed the work of Riemann when the gas
is not isentropic and the system is three dimensional. They even found
that Riemann made an error in that general case! (cf. [6], [11]).

Aftermath. The story of how discontinuous functions can be correct
solutions of a partial di�erential equation of mathematical physics, and
even more, how important is what happens at the point where classical
analysis breaks down, is one of the deepest and most beautiful aspects
of PDEs in the 20th century. The catch word is entropy solutions, a
theory that counts famous names in the last decades like P. Lax, O.
Oleinik, S. Kruzhkov, J. Glimm, and continues for instance with the
recent work by A. Bressan.

Before Riemann nobody really dared to face those problems, after him
all of us must!

Follow the whole �shocking story� in references like [8], [3], [16], and
more recently, [1], [2]. Connections of shocks and general relativity are
described in [4].
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6. Picture gallery. Some shock waves in Nature

Schlieren Image � Convection Currents and Shock Waves, Steve
Butcher, Alex Crouse, and Loren Winters � August, 2001.

The projectiles were 0.222 calibre bullets �red with a muzzle velocity of 1000
m/s (Mach 3). The Schlieren lighting technique used for these images makes
density gradients in �uids visible. Color �ltration provides false color images
in which the colors provide information about density changes.
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This Hubble telescope image shows a small portion of a nebula called
the "Cygnus Loop."

This nebula is an expanding blast wave from a stellar cataclysm, a su-
pernova explosion, which occurred about 15,000 years ago. The super-
nova blast wave, which is moving from left to right across the picture,
has recently hit a cloud of denser-than-average interstellar gas. This
collision drives shock waves into the cloud that heats interstellar gas,
causing it to glow.

Sandia Releases New Version of Shock Wave Physics Program; it can
be found in:

http://composite.about.com/library/PR/2001/blsandia1.htm
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As a conclusion of this work, as practitioners of PDEs interested in
understanding how the real world works, and above all as mathemati-
cians, we would like to say

Danke schön, Herr Riemann!
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