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Abstract. Riemann’s interest in physics is clear from his legacy,
which is discussed in detail in all the contributions to this volume.
Here, after providing a very concise review of the main publica-
tions of Bernhard Riemann on physical problems, we will turn to
consider some rather less known (but not less interesting) connec-
tions between Riemann’s papers and contemporary Physics. More
specifically, we will address, among other aspects: (a) the influence
of Riemann’s work on the zeta function, its functional formula, and
related extensions of those concepts, to the regularization of quan-
tum field theories in curved space-time (in particular, that of the
quantum vacuum fluctuations); and (b) the uses of the Riemann
tensor in general relativity and in very recent generalizations of
this celebrated theory, which aim at understanding the presently
observed acceleration of the universe expansion (the dark energy
issue). We shall argue that the importance of the influence in
Physics of Riemann’s purely mathematical works exceeds by far
that of his papers which were directly devoted to physical issues.

1. Introduction

The presentation at the meeting, on which this paper on Riemann’s
work is based, took place at the very end of a long day of dense and
interesting discussions. It is in this framework that the contents which
follow have to be pondered. The author is somehow afraid he tried to
present in the talk rather deep concepts in a light, almost casual way.
This was however maybe not too bad, since it gave rise to a number of
clever questions from the audience. They can be found, hopefully, in
the recordings of the lecture, to which the reader is addressed for addi-
tional information, when needed. We will try here to avoid repeating
concepts and arguments already contained in the other contributions
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to this volume. For all these reasons—and also for lack of space—
the present article will not be self-contained, but the reader will be
addressed to the relevant references at the appropriate places. Even
then, some repetition will be unavoidable, but hopefully the viewpoints
will be different and maybe enriching.

It is quite clear that Riemann was definitely interested in physics. This
may sound to more than one a weird statement nowadays, when he is
considered to be a pure mathematician, who gave name to so many
concepts in different fields of mathematics, as the Riemann integral,
the Riemann surface, the Cauchy-Riemann equations, the Riemann-
Roch theorem, the Riemannian manifolds, the Riemann curvature ten-
sor and, most notably the Riemann zeta function, with its associated
conjecture—the only one of Hilbert’s problems that after the turn of
the XXth Century has entered the new list of Million Dollar Problems
of the XXIst (awarded by the Clay Foundation). However, historians of
science assure that during his life and till as late as 60 to 80 years after
his death, Riemann was counted among the list of important physicists,
whose ideas on the unification of all known forms of energy preceded
the ground-breaking work of Hilbert and Einstein (see later, and also
the other contributions in this volume). Even more surprising is to
learn that Riemann was not only a theoretical physicist, but also an
experimental one, and that he made use of physical proofs with charged
surfaces in order to establish supplementary checks of the validity of
some mathematical theorems (as boundary problems involving partial
differential equations).

Let me here just recall that, as a student at Göttingen university, Rie-
mann worked with Weber on electromagnetism, which happened start-
ing around 1849. Like Riemann, Weber was also a student of Gauss, but
at that time Weber had already a faculty position. He had proposed a
theory of electromagnetism which gained him a name in history, as ev-
ery physicist knows, although not through his theory in fact, that was
eventually superseded by Maxwell’s one, the real landmark in classical
electromagnetism. Gauss himself is also famous for his important work
on this subject.

Riemann publications include some fifteen papers, four of which where
published after his death. Needless to say, this does not include a
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number of important notes, letters, books and other writings that also
form part of his written scientific production. In the first section of the
present paper a brief summary will be provided (the reader is again
addressed to the other contributions in this issue for more detailed dis-
cussions) of the six papers (among the mentioned fifteen) which are
devoted to physical problems. Then, sort of a panoramic view will be
presented of the enormous influence of Riemann’s work on pure math-
ematics to past and present Physics. In the last part of the paper I will
concentrate more specifically on a couple of issues of my own speciality,
namely, on the one hand, the use of zeta functions as a very elegant
regularization tool in quantum field theory, including a brief descrip-
tion of its uses for the calculation of quantum vacuum fluctuations, the
Casimir effect, and the related cosmological constant problem. The
other issue to be addressed is the very well known applications of the
Riemann curvature tensor and all his geometrical formalism in general
relativity and the, much less known but very important nowadays, pro-
posed modifications of the Einstein-Hilbert Lagrangian with additional
terms—a function of the curvature scalar, the so-called f(R) theories.
Only ca. hundred years after the formulation of general relativity, on
response to the demand of the observed acceleration of the universe
expansion (the crucial dark energy issue), have some attempts at a
modification of Einstein’s equations started to appear. But again, no-
tably, in terms of its basic Riemannian building blocks, as we shall later
see.

2. Six Riemann pieces on physical problems

The starting reference list of works by Riemann, previously mentioned,
consists of The Mathematical Papers of Georg Friedrich Bernhard Rie-
mann (1826-1866), a collection which contains scientific papers of Bern-
hard Riemann as transcribed and edited by David R. Wilkins [1]. These
texts are based on the second edition of the Gesammelte Mathematis-
che Werke and, in the case of some of the papers, the original printed
text in the Journal für die reine und angewandte Mathematik, Annalen
der Physik und Chemie and Annali di Matematica. Included in Ref. [1]
are all papers published in Riemann’s lifetime, papers and correspon-
dence published after Riemann’s death by Dirichlet and others prior
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to the publication of the first edition of the Gesammelte Mathematis-
che Werke (with the exception of the fragment Mechanik des Ohres,
which is non-mathematical in character), and one of the papers from
his Nachlass, first published in the Gesammelte Mathematische Werke.
There is also a translation by W. K. Clifford of Riemann’s inaugural
lecture on the foundations of geometry, and a biographical sketch by
Richard Dedekind that was included in the Gesammelte Mathematische
Werke.

However, I will not go here through all these works. I will restrict
my attention to a subset which, although not complete as viewed by
a historian of science, I think it is fair enough in order to establish
my point that Riemann’s physical production was actually a good part
of his complete scientific work. I will reduced the whole sample in
Ref. [1] to that of the published papers—during Riemann’s lifetime
and posthumously—and limit my study to the papers on physical issues
among them. The list of these published articles is as follows.

2.1 Papers published in Riemann’s lifetime

(1) Grundlagen für eine allgemeine Theorie der Functionen einer
veränderlichen complexen Grösse, Inauguraldissertation, Göttin-
gen (1851).

(2) Ueber die Gesetze der Vertheilung von Spannungselectricität in
ponderabeln Körpern, wenn diese nicht als vollkommene Leiter
oder Nichtleiter, sondern als dem Enthalten von Spannungse-
lectricität mit endlicher Kraft widerstrebend betrachtet werden,
Amtlicher Bericht über die 31. Versammlung deutscher Natur-
forscher und Aerzte zu Göttingen (im September 1854).

(3) Zur Theorie der Nobili’schen Farbenringe, Annalen der Physik
und Chemie, 95 (1855) 130-139.

(4) Beiträge zur Theorie der durch die Gauss’sche Reihe F (α, β, γ, x)
darstellbaren Functionen, Abhandlungen der Königlichen Ge-
sellschaft der Wissenschaften zu Göttingen, 7 (1857) 3-32.

(5) Selbstanzeige: Beiträge zur Theorie der durch die Gauss’sche
Reihe darstellbaren Functionen, Göttinger Nachrichten (1857)
6-8.
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(6) Theorie der Abel’schen Functionen, Journal für die reine und
angewandte Mathematik, 54 (1857) 101-155.

(7) Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse,
Monatsberichte der Berliner Akademie (November, 1859) 671-
680.

(8) Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwin-
gungsweite, Abhandlungen der Königlichen Gesellschaft der Wis-
senschaften zu Göttingen, 8 (1860) 43-65.

(9) Selbstanzeige: Ueber die Fortpflanzung ebener Luftwellen von
endlicher Schwingungsweite, Göttinger Nachrichten (1859) 192-
197.

(10) Ein Beitrag zu den Untersuchungen über die Bewegung eines
flüssigen gleichartigen Ellipsoides, Abhandlungen der Königli-
chen Gesellschaft der Wissenschaften zu Göttingen, 9 (1860)
3-36.

(11) Ueber das Verschwinden der Theta-Functionen, Journal für die
reine und angewandte Mathematik, 65 (1866) 161-172.

2.2 Posthumously published papers of Riemann

(12) Ueber die Darstellbarkeit einer Function durch eine trigono-
metrische Reihe, Habilitationsschrift, 1854, Abhandlungen der
Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13
(1868).

(13) Ueber die Hypothesen, welche der Geometrie zu Grunde liegen,
Habilitationsschrift (1854), Abhandlungen der Königlichen Ge-
sellschaft der Wissenschaften zu Göttingen, 13 (1868).

(14) Ein Beitrag zur Elektrodynamik (1858), Annalen der Physik und
Chemie, 131 (1867) 237-243.

(15) Ueber die Fläche vom kleinsten Inhalt bei gegebener Begrenzung,
Abhandlungen der Königlichen Gesellschaft der Wissenschaften
zu Göttingen, 13 (1868).

Six among these fifteen papers (namely, those with numbers 2, 3, 8, 9,
10, 14) are the ones that I have selected because they directly address
issues of theoretical and experimental physics. I now provide a free
translation of their titles, together with a short summary of each of
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them (indeed very brief, since they are also described in some detail in
the other contributions to this volume).

2.3 Riemann papers on Physics

2. About the distribution laws of electric tension in ponderable bod-
ies, when these cannot be considered as absolutely conductors or
non-conductors, but as opposing with a finite force to the elec-
tric tension they contain, Official Report at the 31st Meeting
of German Scientists and Physicians at Göttingen (September,
1854).

Riemann considers in this paper Leyden jars, where an elec-
tric charge is kept, and studies in particular how, once the bot-
tle has been emptied, a certain amount of charge still remains,
which gradually disappears with time. He studies in detail the
corresponding law describing this phenomenon. Riemann deals,
in particular, as the title clearly indicates, with bodies that are
neither perfect conductors nor perfect isolators. He elaborates
on previous work by Ohm, Weber, Kirchhoff and Kohlrausch.
An important point in the whole development is the contact
with the corresponding experimental results. The mathemat-
ical basis of the paper are partial differential equations, as is
also the case in the ones to follow.

3. On the theory of noble color rings, Annals of Physics and Chem-
istry, 95 (1855) 130-139.

Here an experimental study of the propagation and of the
distribution of an electrical current in a conductor is presented.
The rings mentioned in the title are generated when one cov-
ers a plate of a noble metal, as platinum, gold plated silver, or
similar, with a solution of lead oxide. Then, an electric current,
produced by a battery, is connected to the plate. In this way,
the so-called Newton color rings are produced. Riemann elabo-
rates here on previous results by Becquerel, Du-Bois-Reymond
and Beetz, improving their calculation and discussing about the
hypothesis previously considered by these authors.

8. About the propagation of plane airwaves of finite oscillation am-
plitude, Sessions of the Royal Science Society at Göttingen, 8
(1860) 43-65.
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Riemann integrates in this paper the differential equations
corresponding to the movement of gases, under different con-
ditions of pressure and temperature. He remarks that he can
bring his calculations further away in the order of approxima-
tion, with respect to those previously carried out by Helmholtz,
for instance, who only got to the second order in the pertur-
bative expansion. He refers to previous results by Helmholtz,
Regnault, Joule and Thomson, improving their calculations,
discussing the set up and improving the hypothesis in the works
by these authors. With 22 pages, this is quite a long paper as
compared with other papers of Riemann.

9. Self-announcement: About the propagation of plane airwaves of
finite oscillation amplitude, Göttingen Notices (1859) 192-197.

This is a very short compendium of the main mathematical
formalism that is used in the former paper, of the same title, in
order to obtain the results. In spite of its title, this one could
be considered as a mathematical article. Indeed, it deals with
the theory of propagation of a gas, but the only physical in-
put in the whole paper is the mathematical equation giving the
behavior of gas pressure as a function of the density (that is,
its equation of state), in the absence of any heat exchange. He
develops the mathematical formalism in detail and compares
with previous results by other mathematical physicists as Chal-
lis, Airy, Stokes, Petzval, Doppler and von Ettinghausen (most
of them have given names to quite famous equations).

10. A contribution to the investigation of the movement of a uni-
form fluid ellipsoid, Sessions of the Royal Science Society at
Göttingen, 9 (1860) 3-36.

Again as clearly indicated in the title, Riemann deals here
with the movement of a uniform fluid ellipsoid, which is con-
sidered to be constituted by isolated points that attract them-
selves under the influence of gravity. This is considered one of
the finest papers by Riemann within the class of those consid-
ered here, i.e. the ones dealing with actual physical problems.
In the paper, the equilibrium configurations of the ellipsoid are
identified, what has many and important applications, e.g., to
the study of the possible forms of celestial bodies as galaxies
or clusters. Riemann studies in particular the evolution of the
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principal axis of the ellipsoid and the relative movement of its
components. As the one before, this is also a rather mathe-
matical paper, since the only physics it contains is practically
reduced to the initial conditions and Newton’s law. Previous
results of Dirichlet and Dedekind on this problem are extended.

14. A contribution to Electrodynamics, Annals of Physics and Chem-
istry, 131 (1867) 237-243.

This paper is generally considered to incorporate the main
results of Riemann’s physical (and also philosophical) ideas on
the ‘unification’ of gravity, electricity, magnetism, and heat. It
contains indeed his observation on how a theory of electricity
and magnetism is closely related with those for the propagation
of light and heat radiation. He presents in the paper a complete
mathematical theory, with “an action that does not differenti-
ate” the already mentioned four cases of “gravity, electricity,
magnetism, and temperature”. The finite velocity of propaga-
tion of the interaction (as opposed to the predominant concept,
at the epoch, of action at a distance) is clearly presented, identi-
fying such velocity with that of light, which has been considered
by many to be a really remarkable achievement of Riemann’s
genius. The paper, which with only six pages is in fact quite
short, relies on experimental results by Weber and Kohlrausch,
Busch, and by Bradley and Fizeau.

2.4 Some additional considerations

(1) Once more, those above are not all the works on physical issues
Riemann wrote, but just the ones extracted from a uniform
sample, namely his published articles.

(2) A good example of a work not in the list is the well-known
book by H. Weber and B. Riemann, Die partiellen Differential-
Gleichungen der mathematischen Physik nach Riemanns Vor-
lesungen, 6. unveranderte Aufl., 2 vols (Vieweg, Braunschweig,
1919), that was used for many years as a textbook in different
universities, together with several other papers by Riemann.

(3) An interesting biography of Riemann is the book by Monastyrsky
[2]. A lot of emphasis is made there on the importance of the
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contribution to physics of paper 14 of the list above. In par-
ticular, it is underlined how Riemann was searching for “... a
completely self-contained mathematical theory ..., which leads
from the elementary laws up to the actions in an actually given
filled space, without making a difference between gravity, elec-
tricity, magnetism or the equilibrium of temperature.”

(4) In the celebrated biography of David Hilbert by Constance Reid
[3] we can read that Hilbert sustained the opinion (referring to
what is nowadays known as the Einstein-Hilbert action) that
“... the invariance of the action integral unifies electromag-
netism with gravity ...”, yielding in this way a solution to a
problem that, as he recognizes, “... was already posed by Rie-
mann: the connection between gravitation and light.” Hilbert
goes on to observe that, since then, many investigators had
tried to arrive at a deeper understanding of this connection by
merging the gravitational and electromagnetic potentials into a
unity. The one example Hilbert mentions explicitly is Weyl’s
unification of the two fields in a “unified world metric,” as he
calls it, by means of Weyl’s notion of gauge invariance.

(5) Remarkably enough, in what is probably one the most exhaus-
tive biographies of Riemann ever written, Laugwitz [4] forgets
almost completely about Riemann’s work on physical issues.
This is, in my view, to push to an extreme the opinion that I
maintain here, which is much more moderate and doublefaced.

3. Influence in Physics of Riemann’s purely mathematical

papers

It is the opinion of the author, shared also by others (see, e.g., Ref. [4]),
that the influence in Physics of Riemann’s purely mathematical papers
exceeds by far, in its manifest importance, the above mentioned con-
tributions on actual physical problems; even if the interest of the last
attains already, as we have pointed out in the preceding section, a fair
high level.

I would need more space and time than I have at disposal in order
to describe all such intertwining influences. In the following, to start,
a rather short list of items will provide some basic ideas about those
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influences. Then we will elaborate on some of them in more detail,
not only because of their importance, but also because of the fact that
they have to do with my own scientific expertise and published record
— mostly join works with a number of different colleagues— in the last
few years.

3.1. On the concept of space. One reason why the discovery of non-
Euclidean geometry took so long might have been the fact that there
was universal belief that Euclidean geometry was special because it de-
scribed the space we live in. Stemming from this uncritical acceptance
of the view that the geometry of space is Euclidean was the conviction
that there was no other geometry. Philosophers like Emmanuel Kant
argued that the Euclidean nature of space was a fact of nature, and
the weight of their authority was very powerful. From our perspective,
we know of course that the question of the geometry of space is in
fact entirely different from the question of the existence of geometries
which are non-Euclidean. Gauss was the first who clearly understood
the difference between these two issues. In Gauss’ Nachlass one can
find his computations of the sums of angles of each of the triangles
that occurred in his triangulation of the Hanover region. His conclu-
sion was that the sum was always two right angles, within the limits
of observational errors.

Nevertheless, quite early in his scientific career Gauss became con-
vinced of the possibility of constructing non-Euclidean geometries, and
in fact came up with the ‘theory of parallels,’ but because of the fact
that the general belief in Euclidean geometry was deeply ingrained,
Gauss decided not to publish his researches in the ‘theory of parallels’
and the construction of non-Euclidean geometries for fear that there
would arise criticisms of such investigations by people who did not
understand those things (’the outcry of the Boeotians’).

Riemann took this entire circle of ideas to a higher, completely different
level. In his famous inaugural lecture of 1854, written under the advice
(or, better, compulsory choice) of Gauss himself, he touched upon all
of the aspects that his thesis advisor had considered. He pointed out,
to start, the very crucial idea that a space does not have any structure
except that it is a continuum in which points are specified by the values
of n coordinates, n being the dimension of the space. On such a space
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one can then impose many geometrical structures. His great insight
was that a geometry should be built from these infinitesimal parts. He
treated in depth geometries where the distance between pairs of in-
finitely near points is pythagorean, formulated also central questions
about such geometries, and discovered the set of functions—the sec-
tional curvatures—whose vanishing characterized the geometries which
are Euclidean, namely those whose distance function is pythagorean not
only for infinitely near points, but even for points which are a finite
but small distance apart.

If the space is the one we live in, he formulated the principle that its
geometrical structure could only be determined empirically. In fact he
stated explicitly that the question of the geometry of physical space
does not make sense independently of physical phenomena, i.e., that
space has no geometrical structure until we take into account the phys-
ical properties of matter in it, and that this structure can be deter-
mined by measurement only. Indeed, he went so far as to say that “the
physical matter determines the geometrical structure of space”. This
groundbreaking idea took definite form some half a century later with
Einstein equations.

Indeed, it is also important to remark that Riemann’s ideas consti-
tuted a profound departure from the perceptions that had prevailed
until his time. No less an authority than Newton had asserted that
space by itself is an “absolute entity endowed with Euclidean geomet-
ric structure”, and had built his entire theory of motion and celestial
gravitation on that premise. Riemann went completely away from this
point of view. Thus, for Riemann, space derived its properties from
the matter that occupied it, and he asserted that the only question that
could be studied was whether the physics of the world made its ge-
ometry Euclidean. It followed from this idea that only a mixture of
geometry and physics could be tested against experience. For instance,
measurements of the distance between remote points clearly depended
on the assumption that a light ray would travel along shortest paths.
This merging of geometry and physics, which is a central and domi-
nating theme of modern physics, since Einstein’s work, may be thus
traced back to Riemann’s inaugural lecture [5].
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3.2. Linear algebra, the concept of n−dimensional space (lin-
ear, or trivial ‘variety’). It has been often reported (and this seems
indeed to be the case) that linear algebra was a ‘trivial matter’ for Rie-
mann. However, in Laugwitz’s book [4] (p. 242) we can read that the
early developments of Riemannian geometry were ‘prolix and opaque’
because ‘the development of linear algebra failed for a long time to keep
pace with the progress of analysis.’ This may be true, in fact: although
nowadays n−dimensional linear spaces and their algebraic properties
are considered to be one of the simplest theories in Mathematics, and
its uses in classical and quantum physics are so basic and widespread
(including infinite dimensional spaces, topological spaces, Banach and
Hilbert spaces, etc.), that even the most basic issues of modern physics
would not be possible without such concepts. One cannot simply trans-
late this view to Riemann’s time. But it was already clear that these
abstract linear spaces had nothing to do with the space we live in,
and were not even called ‘spaces’ by Riemann or Gauss, but rather
‘varieties’ or ‘manifolds’ again.

3.3. Riemann’s integral. Riemann may have arrived at his notion
of an ‘integral’ in answer to the question of whether the Fourier coef-
ficients, cn, of a given function tend to 0 (as n goes to infinity). Yet
Laugwitz [4] characterizes Riemann’s introduction of his integral as ad
hoc and remarks that “History would have been different if he had
asked himself the question: what kind of integral implies the equality

lim

∫ b

a

fn =

∫ b

a

f,

where fn is a monotonically increasing sequence of integrable functions
that converge pointwise to the limit f?”

It is of course true that Lebesgue’s integral is the ultimate extension
of Riemann’s one, a most fundamental tool in measure theory. But
it is not less certain that, concerning the subject at discussion here,
Riemann’s integral is much more intuitive for a physicist. This I know
well since I have been teaching both kind of integrals to physicists dur-
ing many years. The Riemann integral is such a physically fashionable
object, in particular the incremental version before the limit is taken,
before an ‘increment’ is transformed into a ‘differential’, which is a far
more elusive concept indeed! (I know well from my students). The
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corresponding upper and lower finite sums1, ... no realization of an
integral could be more suited to the physicist’s mind.

3.4. Complex Variables, Cauchy-Riemann equations. Riemann’s
Thesis studied the theory of complex variables and, in particular, what
we now call Riemann surfaces. It therefore introduced topological
methods into complex function theory. The work elaborates on Cauchy’s
foundations of the theory of complex variables built up over many years
and also on Puiseux’s ideas of branch points. However, Riemann’s The-
sis is a strikingly original piece of work which examined geometric prop-
erties of analytic functions, conformal mappings and the connectivity
of surfaces. Riemann’s work was always based on intuitive reasoning
which would fall at instances a little below the rigor required to make
the conclusions watertight. However, the brilliant ideas which his works
contain are so much clearer because his papers are not overly filled with
lengthy computations [6], and this is why they were so frequently used
in lecture courses (in special in Italy) afterwards. Again, one recog-
nizes the physicist’s approach in many of his discussions, but more
important than this is the enormous use that both classical and quan-
tum physics has made of the complex calculus that Riemann (among
others) contributed to expand and popularize in a very efficient way.

3.5. Riemann surface, sphere, manifold. In principle, those are
very abstract concepts, but which have been applied, e.g., by engineers
to the study of aerodynamics and hydrodynamics. At a different level,
theoretical physicists have more recently drawn upon them very heavily
in their formulations of string theory.

String theory is the modern version of a Theory of Everything (TOE).
It suggests replacing pointlike particles with infinitesimal vibrating
strings as the basic units of the physical world. Some ten to fifteen years
ago, when string theory was overwhelmingly dominating the landscape
in theoretical physics2, there have even been jokes about the typical

1With references to the determination of areas of real fields in ancient Egypt and
Mesopotamia.

2There is a fashionable string theory landscape right now which contains an
enormous amount (maybe 10500) of possible vacuum solutions of the corresponding
theory. Choosing one among them seems hopeless, for the moment, and it is one
of the main problems of M theories (M stands for ‘Mother’, or ‘Mysterious’).
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theoretical physicist always carrying Farkas and Kra’s book (Riemann
Surfaces) under his arm, everywhere from place to place [7]. Edward
Witten, from the Institute for Advanced Study at Princeton, has been,
and continues to be, one of the main architects of string theory. He
has given talks from time to time on Riemann’s work, when discussing
some of the relations between physics and mathematics in the 20th
and 21st centuries, to which the reader is addressed for material that
complements a lot, from a different, much more ambitious perspective,
what I will discuss below.

3.6. Analytic continuation, complex power series. Most of Rie-
mann’s predecessors concentrated on a power series expansion rather
than on the function that it represents. By shifting emphasis to the
latter, Riemann could eliminate superfluous information, determining
a complex function from its singularities. Riemann’s work used sim-
ple concepts in place of the lengthy and sometimes obscure compu-
tations typical of his predecessors and contemporaries. The steady
decrease in the amount of attention Riemann seems to have paid to
power series between 1856 and 1861 indicates how Riemann’s thought
matured, shifting further away from computation. Even when using
his great computational abilities, Riemann still focused upon concepts
rather than the computation itself. Since relations obtained from se-
ries expansions of functions retain their validity outside their regions of
convergence, he asked himself what actually continues functions from
region to region? For example, Riemann constructed a function that
has simple zeros at z = 0, 1, 2, . . . and is finite for all finite z (see Laug-
witz [4]). The road to his function g(z) was heuristic, but this was of no
consequence to Riemann. All he wanted was to find some function with
the prescribed zeros. By contrast, Weierstrass always aimed to obtain
formula representations of given functions. The Riemann approach to
this issue is one of the main starting points in a big part of the present
author’s work, as it will be commented later in more detail.

3.7. Curvature tensor. Differential Geometry. In his general the-
ory of relativity, Einstein used Riemann’s concept of curved space as
the basis for his elegant explanation of gravitation. Massive objects put
a dimple in space in their vicinity. So when other physical objects, in-
cluding photons, which do not have any mass, wander into the object’s
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vicinity, they encounter this curved space. Such curvature determines
the path the objects follow, in a way that was formerly attributed to
the force of attraction that we call gravity.

In much the same way that Riemann conceived of curving and twisting
space in innovative ways, he also described a set of abstract surfaces
that were created by cutting and pasting together normal surfaces in
ways that cannot be employed with real surfaces, but can be thought
abstractly. You can do a lot of mathematics on those abstract sur-
faces. So this has been an amazingly important idea for many parts of
mathematics, and now for physics.

General relativity, quantum field theory in curved spaces, string theo-
ries, gravitation, modern cosmology, would had been impossible with-
out those basic concepts introduced by Riemann.

3.8. The Riemann zeta function. This is known to be of extreme
importance in analytic number theory. But also, through its analytical
continuation (the so called functional equation or reflection formula of
the zeta function), and extrapolating the concept of the zeta function
to the domain of pseudodifferential operators (the spectral values of the
operator replace the natural numbers in the zeta function definition),
as a regularization tool in quantum field theory (notably in curved
space-time), for dynamical systems (classical and quantum), the con-
cept of chaos (also present nowadays in the issue of the distribution of
non-trivial zeros, or Riemann conjecture), etc. The interconnections
between pure mathematics and physical uses here is becoming more on
more profound as decades advance.

4. Selected hot subjects: concept of space, zeta

regularization, modified gravity theories

4.1. The concept of space.

4.1.1. Historical evolution of the concept of space. A summary of the
evolution of the concept of space, from the very remote times of its
inception, could be as follows.
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(1) The introduction of the concept of space seems to go back to
the pre-Socratic philosophers, who already had coined this no-
tion, together with some other very important ones as those
of substance, number, power, infinity, movement, being, atom,
and of course time, among others.

(2) The Pythagorean school should be mentioned as another im-
portant step, in its attempt at bringing all these concepts, in
particular the one of space to the domain of numbers (“all things
are numbers”). Just recall the importance of Pythagoras theo-
rem, that has so much to do with space and with Gauss’ search
to check if the space we live in was or not Euclidean.

(3) Euclid’s “Elements”, this goes without saying as one of he most
important pieces of work in the History of Mankind. It was so
influential, for generations, that departing from the concept of
Euclidean space was absolutely impossible for many centuries
to come.

(4) Indeed, still for Isaac Newton “space is, by itself, an absolute
entity embedded with a Euclidean geometrical structure”.

(5) On the side of the philosophers, for Immanuel Kant “that space
is Euclidean is a property of nature itself”.

(6) Now Bernhard Riemann came to clearly say, as we have ad-
vanced before, the following: “many spaces are possible; it is
the physical matter that determines the geometrical structure of
space”.

(7) And Albert Einstein gave a precise mathematical formulation of
this concept, with the important help of Grossmann and making
use of Riemann’s manifolds and tensors: space-time is curved
by matter, as prescribed by Einstein’s equations (in terms of
the Riemann curvature tensor).

(8) Finally, an embracing reflection by Eugene Wigner, which can
be extended to the whole development of the concept of space,
is that of “the unreasonable effectiveness of Mathematics in the
Natural Sciences”.

4.1.2. On the topology and curvature of our universe. Let us now con-
nect, briefly, these philosophical ideas about space with recent precise
determinations of the topology and geometrical curvature of the uni-
verse we live in—what can be considered as the modern version of
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the pioneering attempts by Gauss, already mentioned, to determine its
possible curvature.

The Friedmann-Robertson-Walker (FRW) model, which can be ob-
tained as the only family of solutions to the Einstein’s equations com-
patible with the assumptions of homogeneity and isotropy of space, is
the generally accepted model of the cosmos nowadays. But, as the
reader surely knows, the FRW is a family with a free parameter, k,
the curvature, that can be either positive, negative or zero (the flat or
Euclidean case). This curvature, or equivalently the curvature radius,
R, is not fixed by the theory and should be matched with cosmologi-
cal observations. Moreover, the FRW model, and Einstein’s equations
themselves, can only provide local properties, not global ones, so they
cannot tell about the overall topology of our world: is it closed or
open? is it finite or infinite? Those questions are very appealing to
any human being. All this discussion will only concern three dimen-
sional space curvature and topology, time not being for the moment
involved.

Serious attempts to measure the possible curvature of the space we
live in go back to Gauss, who measured the sum of the three angles of
a big triangle with vertices on the picks of three far away mountains
(Brocken, Inselberg, and Hohenhagen). He was looking for evidence
that the geometry of space is non-Euclidean. The idea was brilliant,
but condemned to failure: one needs a much bigger triangle to try to
find the possible non-zero curvature of space. Now cosmologist have
recently measured the curvature radius R by using the largest triangle
available, namely one with us at one vertex and with the other two
on the hot opaque surface of the ionized hydrogen that delimits our
visible universe and emits the cosmic microwave background radiation
(CMB, some 3 to 4 ×105 years after the Big Bang) [8]. The CMB maps
exhibit hot and cold spots. It can be shown that the characteristic spot
angular size corresponds to the first peak of the temperature power
spectrum, which is reached for an angular size of .5o (approximately
the one subtended by the Moon) if space is flat. If it has a positive
curvature, spots should be larger (with a corresponding displacement
of the position of the peak), and correspondingly smaller for negative
curvature.
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The joint analysis of the considerable amount of data obtained dur-
ing the last years by balloon experiments (BOOMERanG, MAXIMA,
DASI), combined also with galaxy clustering data, have produced a
lower bound for |R| > 20h−1Gpc, that is, twice as large as the radius
of the observable universe, of about RU ≃ 9h−1Gpc.

General Relativity does not prescribe the topology of the universe, or
its being finite or not. The universe could perfectly be flat and fi-
nite. The simplest non-trivial model from the theoretical viewpoint is
the toroidal topology (that of a tyre or a donut, but in one dimension
more). Traces for the toroidal topology (and more elaborated ones,
as negatively curved but compact spaces) have been profusely inves-
tigated, and some circles in the sky with near identical temperature
patterns were identified [9]. And yet more papers appear, from time to
time, proposing a new topology [10]. However, to summarize all these
efforts and the observational situation, and once the numerical data
are interpreted without bias (what sometimes was not the case, and
led to erroneous conclusions), it seems at present that available data
still point towards a very large (we may call it infinite) flat space.

4.2. On zeta-function regularization and its uses in quantum
field theory. The fact that the infinite series

s =
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · ·

has the sum s = 1 is nowadays clear to any school student. It was
not so, even to well learned persons, for many centuries, as we can
recall from Zeno of Elea’s paradox (or Zeno’s paradox of the tortoise
and Achilles), transmitted by Aristotle and based on the pretended
impossibility to do an infinite number of summations (or recurrent
‘jumps’ or steps of any kind, in a finite amount of time). In fact there
are still modern versions of the Zeno paradox (e.g. the quantum Zeno
paradox) which pop up now and then [11, 12].

In a modern version of this paradox, extrapolated to its more far reach-
ing consequences, Krauss and Dent affirm, in a recent paper appeared
in The New Scientist that, incredible as it may seem, our detection
of dark energy could have reduced the life-expectancy of the universe
(!). This idea is a worrying new variant of the quantum Zeno paradox,
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as these cosmologists claim that astronomers may have accidentally
nudged the universe closer to its death by observing dark energy, the
anti-gravity force which is thought to be accelerating the expansion of
the cosmos. These allegations suggest that by making this observation
in 1998 we may have caused the cosmos to revert to an earlier state
when it was more likely to end. Krauss and Dent came to such aston-
ishing conclusion by calculating how the energy state of our universe—a
summation of all its particles and all their energies—has evolved since
the big bang of creation some 13.7 billion years ago.

The quantum Zeno effect is a well known phenomenon in quantum
physics, with sufficiently precise experimental proofs. It says that,
whenever we observe or measure a quantum system repeatedly, we
make its evolution slower and slower, until it could stop decaying. That
is, if an observer makes repeated, quick observations of a microscopic
object undergoing change, the object can stop changing (just as, ac-
cording to common lore, a watched kettle never boils).

A couple of months ago, under the request of some journalists, I was
asked to report on this issue in the scientific sections of a couple of
Spanish newspapers. What I said, in short, is that even being the
quantum Zeno effect a widely accepted phenomenon, the extrapolation
made by Krauss and Dent is far from clear. Actually, I was able to
find some loopholes in the mathematical derivation, what points out
to the conclusion that, even in the best of cases, the computed result
wold be many orders of magnitude smaller than the one reported and,
therefore, negligible.

I shall not discuss on this philosophical point here any further, but
rather concentrate on the beautiful mathematics behind the Zeno para-
dox. Let us continue with the very simple example above. It is quite
clear that, by taking the first term, 1/2, to the left what remains on the
r.h.s. is just one half of the original series (extracting 1/2 as a common
factor), so that

s − 1

2
=

s

2
=⇒ s = 1.

Thus the conclusion follows that when to one half of an apple pie we
add a quarter of it and then an eighth, and so on, what we get in the
end is the whole pie.
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Now, something more difficult: what is the sum of the following series?

s = 1 + 1 + 1 + · · ·+ 1 + · · ·

Again, any of us will answer immediately: s = ∞. In fact, whatever
∞ is, everybody recognizes in this last expression the definition itself
of the concept of infinity, e.g. the piling of one and the same object,
once and again, without an end. Of course, this idea is absolutely true,
but it is at the same time of little use to modern Physics. To be more
precise, since the advent of Quantum Field Theory (QFT). In fact,
calculations there are plagued with divergent series, and it is of no use
to say that: look, this series here is divergent, and this other one is also
divergent, and the other there too, and so on. One gets non-false but
also non-useful information in this way, and actually we do not observe
these many infinities in Nature. Thus it was discovered in the 30’s and
40’s that something very important was missing from the formulation
or mathematical modelization of quantum physical processes.

Within the mathematical community, for years there was the suspicion
that one could indeed give sense to divergent series. This has now
been proven experimentally (with 10−14 accuracy in some cases) to
be true in physics, but many years earlier mathematicians were the
first to realise that it was possible. In fact, Leonard Euler (1707-1783)
was convinced that “To every series one could assign a number” [13]
(that is, in a reasonable, consistent, and possibly useful way, of course).
Euler was unable to prove this statement in full, but he devised a
technique (Euler’s summation criterion) in order to ‘sum’ a large family
of divergent series. His statement was however controverted by some
other great mathematicians, as Abel, who said that “The divergent
series are the invention of the devil, and it is a shame to base on them
any demonstration whatsoever”. [14] There is a classical treatise due
to G.H. Hardy and entitled simply Divergent Series [15] that can be
highly recommended to the reader.

Actually, regularization and renormalization procedures are essential in
present day Physics. Among the different techniques at hand in order
to implement these processes, zeta function regularization is one of the
most beautiful. Use of this method yields, for instance, the vacuum
energy corresponding to a quantum physical system, which could, e.g.,
contribute to the cosmic force leading to the present acceleration of the
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expansion of our universe. The zeta function method is unchallenged
at the one-loop level, where it is rigorously defined and where many
calculations of QFT reduce basically (from a mathematical point of
view) to the computation of determinants of elliptic pseudodifferen-
tial operators (ΨDOs) [16]. It is thus no surprise that the preferred
definition of determinant for such operators is obtained through the
corresponding zeta function (see, e.g., [17, 18]).

4.2.1. The zeta function as a summation method. The method of zeta
regularization evolved from the consideration of the Riemann zeta func-
tion as a ‘series summation method’. The zeta function, on its turn,
was actually introduced by Euler, from considerations of the harmonic
series

1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n
+ · · · ,

which is logarithmically divergent, and of the fact that, putting a real
exponent s over each term,

1 +
1

2s
+

1

3s
+

1

4s
+ · · · + 1

ns
+ · · · ,

then for s > 1 the series is convergent, while for s ≤ 1 it is divergent.
Euler called this expression, as a function of s, the ζ−function, ζ(s),
and found the following important relation

ζ(s) =
∞

∑

n=1

1

ns
=

∏

pprime

(

1 − 1

ps

)

−1

,

which is crucial for the applications of this function in Number Theory.
By allowing the variable s to be complex, Riemann saw the relevance
of this function (that now bears his name) for the proof of the prime
number theorem3, and formulated thereby the Riemann hypothesis,
which is one of the most important problems (if not the most important
one) in the history of Mathematics. More of that in the excellent review
by Gelbart and Miller [19].

For the Riemann ζ(s), the corresponding complex series converges ab-
solutely on the open half of the complex plane to the right of the

3Which states that the number Π(x) of primes which are less than or equal to a
given natural number x behaves as x/ log x, as x → ∞. It was finally proven, using
Riemann’s work, by Hadamard and de la Vallé-Poussin.
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abscissa of convergence Re s = 1, while it diverges on the other side,
but it turns out that it can be analytically continued to that part of
the plane, being then everywhere analytic and finite except for the
only, simple pole at s = 1 (Fig. 1).4 In more general cases, namely
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Figure 1. The zeta function ζ(s) is defined in the following

way, on the whole complex plane, s ∈ C. To start, on the open

half of the complex plane which is on the r.h.s of the abscissa of

convergence Re s = 1, ζ is defined as the absolutely convergent

series: ζ(s) =
∑

∞

n=1
n−s. In the rest of the s−complex plane, ζ(s)

is defined as the (unique) analytic continuation of the preceding

function, which turns out to be meromorphic. Specifically, it is

analytic everywhere on the complex plane except for one simple

pole with residue equal to 1, which is at the point s = 1 (notice that

it corresponds to the logarithmically divergent harmonic series, as

already discussed).

corresponding to the Hamiltonians which are relevant in physical ap-
plications, [20, 21, 22] the situation is in essence quite similar, albeit in

4Where it yields the harmonic series: there is no way out for this divergence.
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practice it can be rather more involved. A mathematical theorem ex-
ists, which assures that under very general conditions the zeta function
corresponding to a Hamiltonian operator will be also meromorphic,
with just a discrete number of possible poles, which are usually simple
and extend to the negative side of the real axis.5

The above picture already hints towards the use of the zeta function
as a summation method. Let us consider two examples.

(1) We interpret our starting series

s1 = 1 + 1 + 1 + · · · + 1 + · · ·
as a particular case of the Riemann zeta function, e.g. for the
value s = 0. This value is on the left hand side of the abscissa
of convergence (Fig. 1), where the series as such diverges but
where the analytic continuation of the zeta function provides a
perfectly finite value:

s1 = ζ(0) = −1

2
.

So this is the value to be attributed to the series 1+1+1+1+· · · .
(2) The series

s2 = 1 + 2 + 3 + 4 + · · ·+ n + · · ·
corresponds to the exponent s = −1, so that

s2 = ζ(−1) = − 1

12
.

A couple of comments are in order.

(1) In two following years, some time ago, two distinguished physi-
cists, A. Slavnov from Moscow and F. Yndurain from Mdrid,
gave seminars in Barcelona, about different subjects. It was
quite remarkable that, in both presentations, at some point
the speaker addressed the audience with these (or equivalent)
words: “As everybody knows, 1 + 1 + 1 + · · · = −1/2”.6

5Although there are some exceptions to this general behavior, they correspond
to rather twisted situations, and are outside the scope of this brief presentation.

6Implying maybe: If you do not know this it will be no use for you to continue
listening. Remember by the way the lemma of the Pythagorean school: Do not
cross this door if you do not know Geometry.
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(2) That positive series, as the ones above, can yield a negative re-
sult may seem utterly nonsensical. However, it turns out that
the most precise experiments ever carried out in Physics do con-
firm such results. More precisely: models of regularization in
QED built upon these techniques lead to final numbers which
are in agreement with the experimental values up to the 14th
figure [23]. In recent experimental proofs of the Casimir ef-
fect [24] the agreement is also quite remarkable (given the dif-
ficulties of the experimental setup) [25].

(3) The method of zeta regularization is based on the analytic con-
tinuation of the zeta function in the complex plane. Now, how
easy is to perform that continuation? Will we need to under-
take a fashionable complex-plane computation every time? It
turns out that this is not so. The result is immediate to obtain,
in principle, once you know the appropriate functional equation
(or reflection formula) that your zeta function obeys: in the case
of the Riemann zeta ξ(s) = ξ(1 − s), ξ(s) ≡ π−s/2Γ(s/2)ζ(s).
In practice these formulas are however not optimal for actual
calculations, since they are ordinarily given in terms of power
series expansions (as the Riemann zeta itself), which are very
slowly convergent near the corresponding abscissa. Fortunately,
sometimes there are more clever expressions, that can be found,
which converge exponentially fast, as the celebrated Chowla-
Selberg [26] formula and some others [27, 28]. Those formulas
are an speciality of the author, and give enormous power to the
method of zeta function regularization.

4.2.2. Zeta regularization in physics. As advanced already, the regu-
larization and renormalization procedures are essential issues of con-
temporary physics —without which it would simply not exist, at least
in the form we now know it. [29] Among the different methods, zeta
function regularization—which is obtained by analytic continuation in
the complex plane of the zeta function of the relevant physical operator
in each case—is maybe the most beautiful of all. Use of this method
yields, for instance, the vacuum energy corresponding to a quantum
physical system (with constraints of any kind, in principle). Assume
the corresponding Hamiltonian operator, H , has a spectral decompo-
sition of the form (think, as simplest case, in a quantum harmonic
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oscillator): {λi, ϕi}i∈I , where I is a set of indices (which can be dis-
crete, continuous, mixed, multiple, . . . ). Then, the quantum vacuum
energy is obtained as follows [20]:

E/µ =
∑

i∈I

〈ϕi, (H/µ)ϕi〉 = TrζH/µ =
∑

i∈I

λi/µ

=
∑

i∈I

(λi/µ)−s

∣

∣

∣

∣

∣

s=−1

= ζH/µ(−1),

where ζA is the zeta function corresponding to the operator A, and the
equalities are in the sense of analytic continuation (since, generically,
the Hamiltonian operator will not be of the trace class).7 Note that the
formal sum over the eigenvalues is usually ill defined, and that the last
step involves analytic continuation, inherent with the definition of the
zeta function itself. Also, the unavoidable regularization parameter
with dimensions of mass, µ, appears in the process, in order to ren-
der the eigenvalues of the resulting operator dimensionless, so that the
corresponding zeta function can indeed be defined. We shall not dis-
cuss these important details here, which are just at the starting point
of the whole renormalization procedure. The mathematically simple-
looking relations above involve very deep physical concepts (no wonder
that understanding them took several decades in the recent history of
quantum field theory).

4.2.3. The Casimir energy. In fact things do not turn out to be so
simple. One cannot assign a meaning to the absolute value of the zero-
point energy, and any physical effect is an energy difference between
two situations, such as a quantum field in curved space as compared
with the same field in flat space, or one satisfying BCs on some surface
as compared with the same in its absence, etc. This difference is the
Casimir energy: EC = EBC

0 − E0 = 1
2

(

tr HBC − tr H
)

.

But here a problem appears. Imposing mathematical boundary condi-
tions (BCs) on physical quantum fields turns out to be a highly non-
trivial act. This was discussed in much detail in a paper by Deutsch

7The reader should be warned that this ζ−trace is actually no trace in the usual
sense. In particular, it is highly non-linear, as often explained by the author [30].
Some colleagues are unaware of this fact, which has lead to important mistakes and
erroneous conclusions too often.
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and Candelas a quarter of a century ago [31]. These authors quantized
em and scalar fields in the region near an arbitrary smooth bound-
ary, and calculated the renormalized vacuum expectation value of the
stress-energy tensor, to find out that the energy density diverges as the
boundary is approached. Therefore, regularization and renormaliza-
tion did not seem to cure the problem with infinities in this case and
an infinite physical energy was obtained if the mathematical BCs were
to be fulfilled. However, the authors argued that surfaces have non-zero
depth, and its value could be taken as a handy (dimensional) cutoff in
order to regularize the infinities. Just two years after Deutsch and Can-
delas’ work, Kurt Symanzik carried out a rigorous analysis of QFT in
the presence of boundaries [32]. Prescribing the value of the quantum
field on a boundary means using the Schrödinger representation, and
Symanzik was able to show rigorously that such representation exists
to all orders in the perturbative expansion. He showed also that the
field operator being diagonalized in a smooth hypersurface differs from
the usual renormalized one by a factor that diverges logarithmically
when the distance to the hypersurface goes to zero. This requires a
precise limiting procedure and point splitting to be applied. In any
case, the issue was proven to be perfectly meaningful within the do-
mains of renormalized QFT. In this case the BCs and the hypersurfaces
themselves were treated at a pure mathematical level (zero depth) by
using (Dirac) delta functions.

Recently, a new approach to the problem has been postulated [33].
BCs on a field, φ, are enforced on a surface, S, by introducing a scalar
potential, σ, of Gaussian shape living on and near the surface. When
the Gaussian becomes a delta function, the BCs (Dirichlet here) are
enforced: the delta-shaped potential kills all the modes of φ at the
surface. For the rest, the quantum system undergoes a full-fledged
QFT renormalization, as in the case of Symanzik’s approach. The
results obtained confirm those of [31] in the several models studied
albeit they do not seem to agree with those of [32]. They are also in
clear contradiction with the ones quoted in the usual textbooks and
review articles dealing with the Casimir effect [34], where no infinite
energy density when approaching the Casimir plates has been reported.
This issue is also of importance at the cosmological level, in braneworld
models.
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4.3. Present day cosmology from modified theories of gravity.

4.3.1. Uses of the Riemann tensor in cosmology. As was mentioned be-
fore, Riemann’s revolutionary ideas about the concept of physical space
where given a definite form by Albert Einstein when he formulated the
Theory of General Relativity, with the help of his, more mathematically
minded, classmate and friend Marcel Grossmann 8. The community of
relativists celebrates Grossmann’s contributions to physics by organiz-
ing the very important Marcel Grossman meetings, every three years
(MG12 will take place in Paris, in 2009). Let us summarize the main
points of the so called “curved-space-time physics” (excellent references
are the books by Robert Wald [35]):

(1) Space-time, the set of all events, is a four-dimensional manifold
endowed with a metric (M, g).

(2) The metric is physically measurable by rods and clocks.
(3) The metric of space-time can be put in the Lorentz form mo-

mentarily at any particular event by an appropriate choice of
coordinates.

(4) Freely-falling particles, unaffected by other forces, move on time-
like geodesics of the space-time.

(5) Any physical law that can be expressed in tensor notation in
special relativity has exactly the same form in a locally-inertial
frame of a curved space-time.

We cannot go into much detail in the standard theory of General Rel-
ativity, since we here aim at putting our emphasis on the very recent
developments concerning its application to modern cosmology. Let us
just recall Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν ,

where on the lhs we have the curvature, the geometry of space-time,
under the form of contractions of the Riemann curvature tensor:

Rµνρ
σ = Γσ

µρ,ν − Γσ
νρ,µ + Γα

µρΓ
σ
αν − Γα

νρΓ
σ
αµ,

8Who later became a Professor of Mathematics at the Federal Polytechnic Insti-
tute in Zurich, today the ETH Zurich, specializing in descriptive geometry.
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the Γ’s being, as usual, Christoffel symbols of the Riemannian connec-
tion, and

Rµρ = Rµσρ
σ, R = Rµ

µ.

Einstein observed that the solution of these equations, subject to the
constraints of the cosmological principle, led to a universe that was not
static. He was disappointed because at that time (1915-20) the ex-
pansion of the Universe had not yet been discovered (Hubble, 1925-30)
and the universe was considered by everybody to be in a stationary
state. This led Einstein to introduce (almost against his actual will)
a constant term in his equations (known now as the cosmological con-
stant, Λ), that was perfectly compatible with all of the principles of his
gravity theory (but otherwise unnecessary):

Rµν −
1

2
gµνR = 8πGTµν − Λgµν .

When a few years later Hubble discovered that the universe was in
fact expanding, Einstein said the introduction of the cosmological con-
stant had been the greatest blunder of his life. He was right to be
upset since, to get a static Universe, he had added an artificial term
to his field equations that stabilized the Universe against expansion
or contraction. Had he possessed sufficient confidence in his original
equations, he could have predicted that either his theory was wrong or
the Universe was expanding or contracting, well before there was any
experimental evidence of the expansion!9

An important historical issue (also for what will follow) was the deriva-
tion of Einstein’s equations from a variational principle, starting from
what is now called the Einstein-Hilbert action10:

S =

∫

d4x
√−g (LG + Lm − λ) ,

where λ = Λ/8πG. Here the first two terms within the brackets are
the Lagrangians corresponding to gravity and matter, and the last one
is the cosmological constant term. By variation in the Euler-Lagrange

9What would have been an enormous accomplishment. This explains why Ein-
stein got so angry.

10In fact Hilbert preceded Einstein by one day in the submission of his results
for publication, in 1915.
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sense, one obtains

δSm =

∫

d4x
√
−g

(

∂Lm

∂gµν
− 1

2
gµνLm

)

δgµν ,

Tµν = −2
∂Lm

∂gµν
+ gµνLm,

wherefrom Einstein’s equations follow.

4.3.2. Cosmological constant and the quantum vacuum energy. How-
ever, this was not the end of the story. Any attempt at a unification
of all fundamental interactions—already envisaged by Riemann and to
which Einstein devoted an important part of his entire life and scientific
effort—that is, a physical theory describing the gravitational interac-
tions of matter and energy in which matter and energy are described
by quantum theory, has failed. In most theories that aim at doing this,
gravity itself is quantized. Since the contemporary theory of gravity,
general relativity, describes gravitation as the curvature of space-time
by matter and energy, a quantization of gravity implies some sort of
quantization of space-time itself. As all existing physical theories rely
on a classical space-time background, this presents profound method-
ological and ontological challenges, in fact it is considered to be maybe
the most difficult problem in physics. However, new theories must al-
ways contain the successful previous ones, that have proven already to
be perfectly valid in their corresponding domains of applicability.

Thus, special relativity reduces to classical Newtonian mechanics when
the velocities v involved are v ≪ c, and corrections to the classical
formulas start with terms of the form v/c and higher powers (post-
Newtonian, post-post-Newtonian approaches, etc.). In this sense, some
successful semi-classical approaches to quantum gravity have been con-
structed. Summing up, even if we do not have a quantum theory of
gravity, it is by now clear that the quantum correction to the Einstein
equations corresponding to the fluctuations of the quantum vacuum
will show out as an additional term in the energy-momentum tensor
Tµν , side by side with Einstein’s cosmological constant contribution,
namely

Rµν −
1

2
gµνR = 8πG(Tµν − Egµν − λgµν),
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where E denotes this vacuum energy density (and remember λ =
Λ/8πG). More precisely, the combination of this two terms (includ-
ing all fundamental physical constants) reads

Λ c2

8πG
+

1

Vol

~ c

2

∑

i

ωi,

ωi being the energy modes (spectrum) of the Hamiltonian operator of
the quantum theory. This fact will remain true in any quantum theory
of gravitation, as far as vacuum fluctuations behave as an ordinary
form of energy (e.g., they satisfy the equivalence principle), what seems
indeed to be the case [36].

The dramatic consequence of this issue (already pointed out by Zel’do-
vich in the sixties) is that we cannot get rid any more of the cosmo-
logical constant as Einstein finally did. It will pop up, under this new
form, as fluctuations of the quantum vacuum, that are allowed by the
fundamental Heisenberg’s uncertainty principle (unless, of course, all
quantum vacuum fluctuations add up to zero, which is very difficult to
realize; this is known as the cosmological constant problem).

4.3.3. Cosmic acceleration. Astrophysical observations clearly indicate
that huge amounts of ‘dark matter’ and ‘dark energy’ are needed to
explain the observed large scale structures and cosmic accelerating ex-
pansion of our universe. Up to now, no experimental evidence has been
found, at the fundamental level, to convincingly explain such weird
components. In particular, concerning the problem of the accelerating
expansion, the only possibility to solve it within the domains of Ein-
steinian gravity is, again, through the cosmological constant term, that
with the convenient sign provides the contribution needed to produce
the observed acceleration (very similar to the way how Einstein tried
to stabilize the universe against gravitational collapse, when he though
it should be static). However, this is not easy to do. First, when
computed with care, the contribution of the vacuum energy density
is many orders of magnitude larger than the value needed to explain
the small acceleration rate of the universe expansion11 (what is called
the ‘new’ problem of the cosmological constant, which is even worse

11It is of the order of 10123, one of the largest discrepancies between theory and
observation in the history of Physics.
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than the older one). Second, it is not even clear (very specific models
must be involved) whether the sign of the contribution of the vacuum
fluctuations is the correct one in order to obtain expansion (and not
contraction!). Making the story short, there are models where these
two problems could be understood, but always with the help of some
tailored hypothesis, and the general consensus is that the problem is
far from having been solved yet.

This has led to consider completely different approaches (see, for in-
stance, [37]). One of the most successful is the so-called f(R) gravity,
which is a deviation from Einstein’s General Relativity in the way we
are going to see (note that the R stands here again for Riemann: the
Riemann tensor contraction). This is an alternative theory of gravity
in which dark energy and dark matter could be effects—illusions, in
a sense—created by the curvature of space-time (the same bending of
space and time as in General Relativity, caused by extremely massive
objects, like galaxies, but now a bit modified). This theory does not
require the existence of dark energy and dark matter. The problem
then could be completely reversed considering dark matter and dark
energy as ‘shortcomings’ of General Relativity and claiming for a more
‘correct’ theory of gravity as derived phenomenologically by matching
the largest number of observational data available. As a result, accel-
erating behavior of cosmic fluid and rotation curves of spiral galaxies
have been reported to be reproduceable by means of ‘curvature effects’
[38].

4.3.4. f(R) gravity. Modified gravity models constitute an interesting
dynamical alternative to the ΛCDM cosmology—which is the standard
approach nowadays—in that they are able to describe with success, and
in a rather natural way, the current acceleration in the expansion of
our Universe, the so called dark energy epoch (and even perhaps the
initial de Sitter phase and inflation). As the name itself indicates, the
modification in the action of the modified gravitational models consists
of changing the R contribution by adding to it a term which is a (in
principle arbitrary) function of R only. It thus reads

S =
1

κ2

∫

d4x
√
−g [R + f(R)] + S(m).
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Usually, one calls F (R) = R + f(R) and sometimes the theory itself is
named F (R) theory (those are very recent concepts, and nomenclature
is not yet completely fixed). The general equation of motion in F (R) ≡
R + f(R) gravity with matter is obtained as

1

2
gµνF (R) − RµνF

′(R) − gµν2F ′(R) + ∇µ∇νF
′(R) = −κ2

2
T(m)µν ,

where T(m)µν is the matter energy-momentum tensor.

Modified f(R) gravity has undergone already a number of studies which
conclude that this gravitational alternative to dark energy is able to
pass the solar system tests, that is, the very severe constraints imposed
by the observational proofs that Einstein’s gravity (with R only) is
able to describe to extremely high precision the evolution of our solar
system. Recently the importance of those modified gravity models has
been reassessed, namely with the appearance of the so-called ‘viable’
f(R) models [39, 40]. Those are models which satisfy the stringent
cosmological as well as the local gravity constraints, which had caused
a number of serious problems to some of the first-generation theories
of that kind. The final aim of all these phenomenological models is
to describe a segment as large as possible of the whole history of our
universe, as well as to recover all local predictions of Einsteinian gravity,
which have been verified experimentally to very good accuracy, at the
solar system scale.

In this last couple of years, we have investigated for two classes of ‘vi-
able’ modified gravitational models what it means, roughly speaking,
that they incorporate the vanishing (or fast decrease) of the cosmolog-
ical constant in the flat (R → 0) limit, and that they exhibit a suitable
constant asymptotic behavior for large values of R. A huge family
of these models, which we term first class—and to which most of the
models proposed in the literature belong—can be viewed as containing
all possible smooth versions of the following sharp step-function model.
To discuss this toy model, at the distribution level, proves to be very
useful in order to grasp the essential features that all models in this
large family are bound to satisfy. In other words, to extract the gen-
eral properties of the whole family in a rather simple fashion (which
involves, of course, standard distribution calculus). This simple model
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(representative of the whole class) reads

f(R) = −2Λeff θ(R − R0),

where θ(R − R0) is Heaviside’s step distribution. Models in this class
are characterized by the existence of one or more transition scalar cur-
vatures, an example being R0 in the above toy model.

The other class of modified gravitational models that has been consid-
ered contains a sort of ‘switching on’ of the cosmological constant as
a function of the scalar curvature R. A simplest version of this kind
reads

f(R) = 2Λeff(e−bR − 1).

Here the transition is smooth. The two models above may be combined
in a natural way, if one is also interested in the phenomenological de-
scription of the inflationary epoch. For example, a two-step model may
be the smooth version of

f(R) = −2Λ0 θ(R − R0) − 2ΛI θ(R − RI) ,

with R0 ≪ RI , the latter being the inflation scale curvature.

In a recent paper [41], we have developed a general approach to viable
modified gravity in both the Jordan and the Einstein frames. We have
focussed on the so-called step-class models mainly, since they seem
to be most promising from the phenomenological viewpoint and, at
the same time, they provide a natural possibility to classify all viable
modified gravities. We have explicitly presented the cases of one- and
two-step models, but a similar analysis can be extended to the case of
an N -step model, with N being finite or countably infinite. No addi-
tional problems are expected to appear and the models can be adjusted,
provided one can always find smooth solutions interpolating between
the de Sitter solutions (what seems at this point a reasonable possibil-
ity), to repeat at each stage the same kind of de Sitter transition. We
can thus obtain multi-step models which may lead to multiple inflation
and multiple acceleration, in a way clearly reminiscent of braneworld
inflation.

This looks quite promising, with the added bonus that the model’s
construction is rather simple. Use has been made of the simple but
efficient tools provided by the corresponding toy model constructed
with sharp distributions, a new technique that we have pioneered. It
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is to be remarked that, for the infinite-step models, one can naturally
expect to construct the classical gravity analog of the string-theory
landscape realizations, as in the classical ideal fluid model.

The existence of viable (or “chameleon”) f(R) theories with a phase
of early-time inflation is not known to us from the literature. The fact
that we are able to provide several classes of models of this kind that
are consistent also with the late-time accelerated expansion is thus a
novelty, worth to be remarked.

Both inflation in the early universe and the recent accelerated expan-
sion could be thus understood in these theories in a unified way. If we
start with large curvature, f(R) becomes almost constant and plays
the role of the effective cosmological constant, which would generate
inflation. For a successful exit from the inflationary epoch we may
need, in the end, more (say small non-local or small Rn) terms. When
curvature becomes smaller, matter could dominate, what would indeed
lower the curvature values. Then, when the curvature R becomes small
enough and R0 ≪ R ≪ RI , f(R) becomes again an almost constant
function, and plays the role of the small cosmological constant which
generates the accelerated expansion of the universe, that started in
the recent past. Moreover, the model naturally passes all local tests
and can be considered as a true viable alternative to General Rela-
tivity. Some remark is however in order. On general grounds, one is
dealing here with a highly non-linear system and one should investi-
gate all possible critical points thereof (including other time-dependent
cosmologies), within the dynamical approach method. Of course, the
existence of other critical points is possible; anyhow, for viable f(R)
models, to find them is not a simple task, and in Ref. [41] we have
restricted our effort to the investigation of the de Sitter critical points.
With regard to the stability of these points, the one associated with
inflation should be unstable. In this way, the exit from inflation (what
is always a very non-trivial issue) could be achieved in a quite natural
way. In particular, for instance, this is in fact the case for the two-step
model with an R3 term.

In conclusion, we are on the way to construct realistic modified grav-
ities. Some of these models ultimately lead to the unification of the
inflationary epoch with the late-time accelerating epoch, under quite
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simple and rather natural conditions. What remains to be done is to
study those models in further quantitative detail, by comparing their
predictions with the accurate astrophysical data coming from ongoing
and proposed sky observations. It is expected that this can be done
rather soon, having in mind the possibility to slightly modify the early
universe features of the theories here discussed, while still preserving
all of their nice universal properties.

4.4. Epilogue. Let us finish this short overview of Riemann’s work
and its uses in modern Physics—a clear example of the very fruitful
relation between the worlds of Physics and Mathematics—with an ex-
tremely touching sentence that appears in a letter written by Albert
Einstein and addressed to Arnold Sommerfeld, in the year 1912—this
means, some 60 years after the celebrated Habilitationschrifft of Bern-
hard Riemann—where Einstein comments on the efforts he is doing in
trying to understand Riemannian Geometry:

“Aber eines ist sicher, dass ich mich im Leben noch nicht annähend
so geplagt habe und dass ich große Hochachtung vor der Mathematik
eingeflößt bekommen habe, die ich bis jetzt in ihren subtileren Teilen
in meiner Einfalt für puren Luxus gehalten habe!”

What means, in a free English translation: “But one thing is sure,
that never before in my life had I invested such an effort, and that I
never had had such a high opinion of Mathematics, which I considered
till very recently, in my boldness, and for what respects its most subtle
parts, as a mere luxury!”

I, ja per acabar, en català: “Però una cosa és segura, que mai en la
meva vida no m’havia afanyat ni de bon troç com ara, i que mai no
havia dispensat tan alta consideració a la Matemàtica, la qual tenia fins
fa poc, en la meva ingenuitat, pel que fa a les seves parts més subtils,
per un simple luxe!”
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