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Mathematics, Physics and PDEs Origins of differential calculus

Differential Equations. The Origins

The Differential World, i.e, the world of derivatives, was invented /
discovered in the XVII century, almost at the same time that Modern
Science (then called Natural Philosophy), was born. We owe it to the
great Founding Fathers, Galileo, Descartes, Leibnitz and Newton.
Motivation came from the desire to understand Motion, Mechanics and
Geometry.
Newton formulated Mechanics in terms of ODEs, by concentrating on the
movement of particles. The main magic formula is

m
d2x
dt2 = F(t, x,

dx
dt

)

though he would write dots and not derivatives Leibnitz style.
Newton thought about fluids, in fact he invented Newtonian fluids, and
there you need dependence on space and time simultaneously, x as well
as t. This means Partial Differential Equations (=PDEs). But his progress
was really small if you compare with the rest. We conclude that there
was not much time for PDEs from from Big Bang to 1700 AD.
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Mathematics, Physics and PDEs XVIII century

Origins of PDEs

In the XVIII century, PDEs appear in the work of Jean Le Rond
D’Alembert about string oscillations: there a set of particles moves
together due to elastic forces, but every one of the infinitely many solid
elements has a different motion, u = u(x, t).

This is one of the first instances of continuous collective dynamics. PDEs
are the mode of expression of such CCD.

Johann and Daniel Bernoulli and then Leonhard Euler lay the foundations
of Ideal Fluid Mechanics (1730 to 1750), in Basel and StPetersburg. This
is PDEs of the highest caliber: it is a system,

∂u
∂t

+ u · ∇u +∇p = 0, ∇ · u = 0.

The system is nonlinear; it does not fit into one of the 3 types that we
know today (elliptic, parabolic, hyperbolic); the main pure-mathematics
problem is still unsolved (existence of classical solutions for good data;
Clay Problems, year 2000).
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Mathematics, Physics and PDEs Modern times

PDEs in the XIX Century

The new century confronts revolutions in the concept of heat and energy,
electricity and magnetism, and what is space. You may add a lesser
revolution, real fluids.

All of these fields end up mathematically in PDEs:

(i) heat leads to the heat equation, ut = ∆u, and the merit goes to J.
Fourier.

(ii) electricity leads to the Coulomb equation in the Laplace-Poisson form:
−∆V = ρ. This equation also represents gravitation!

(iii) electromagnetic fields are represented by the Maxwell system. The
vector potential satisfies a wave equation, the same as D’Alembert’s, but
it is vector valued and in several dimensions.

(v) Real fluids are represented by the Navier Stokes equations. Sound
waves follow wave equations, but they can create shocks (Riemann).
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Mathematics, Physics and PDEs Modern times

PDEs cont. XIX Century

(iv) Geometry was transformed from the Euclides tradition plus Cartesian
Algebra to the spirit of PDEs by G. Gauss and B. Riemann. The spirit is
condensed in a number of key words. Space is determined by its metric
which is a local object which has tensor structure. The connection from
point to point is a new object called covariant derivative, the curvature is a
second order operator, a nonlinear relative of the Laplace operator.

After these people, in particular Riemann, reality is mainly continuous
and its essence lies in the physical law, that is a law about a field or a
number of fields. In symbols, we have Φ(x, y, z, t) and its (system of laws)

LΦ = F,

where F is the force field (a tensor).
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Mathematics, Physics and PDEs Modern times

XXth century. Summing Up

In the XXth century General Relativity and Quantum Mechanics take this
form. Space, matter and interactions become fields.

A main variant is Statistical Mechanics, a thread that leads to Brownian
motion (Einstein, Smoluchowski), abstract probability (Kolmogorov,
Wiener), stochastic calculus and stochastic differential equations (Itō).

The main (technical) task of the Mathematician working in Mathematical
Physics is to understand the world of Partial Differential Equations, linear
and nonlinear.
The same is true nowadays for geometers (go to the CRM semester!).
The main abstract tool is Functional Analysis.
The combination of Functional Analysis, PDES and ODEs, Geometry, Physics
and Stochastic Calculus is one of the Great Machines of today’s research, a child
of the XXth century.
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G. F. B. Riemann

Georg Friedrich Bernhard Riemann (1826-1866)

Reference to his life and work :
Wikipedia, MacTutor, Encyclopaedia Britannica and

Detlef Laugwitz, Bernhard Riemann (1826-1866): Turning Points in the
Conception of Mathematics, Birkhäuser (1999)
M. Monastyrsky, Riemann, Topology, and Physics Birkhäuser, 2nd ed., 1999.
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G. F. B. Riemann

Georg Friedrich Bernhard Riemann (1826-1866)

The essence of Reality lies in a Hidden World

Begriffe and Formeln der Höhere Mathematik

Key: Concepts and Formulas of Abstract Mathematics

♠ ♠ ♠

Videmus in aenigmata, et per speculum
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Riemmann, complex variables and 2-D fluids
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Riemmann, complex variables and 2-D fluids

Let us do Math! Complex Variables
(Euler, Cauchy, Gauss, Riemann, Weierstrass)

You start with a function

u(x, y) = u(z) , z = x + iy = (x, y)

that is supposed to be a good function of two real variables.
good function of two real variables means (could mean) u ∈ C1(Ω) for
some Ω subdomain of R2.
Therefore, it has a gradient, ∇u(z0) = (ux, uy)
But, what is a good function of one complex variable?
First of all, to keep the symmetry, there must be two real functions of two
real variables:

u = u(x, y), v = v(x, y)

which we write as f = f (z) with f = u + iv, and z = x + iy.

The question is: Do we ask that f ∈ C1 and that is all?
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Riemmann, complex variables and 2-D fluids

Complex Variables II

The answer is no and this is a consequence of algebra.
Let us explain why: very nice real functions of one variable are
polynomials, and
very nice complex functions of one complex variable should also be
polynomials.
Now, polynomials are easy to define, for instance f (z) = z2 means

u = x2 − y2, v = 2xy

f (z) = z3 means

u = x3 − 3xy2, v = 3x2y− y3.

Can the reader do f (z) = zn by heart? Euler could! In fact, Euler and
Moivre could see the whole trigonometry.
Can you see something special in these pairs of functions, u and v ?
Cauchy and Riemann could! They saw the whole theory of complex
holomorphic functions.
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Riemmann, complex variables and 2-D fluids

Complex Variables: the PDE code, called CRE

What they saw is this hidden symmetry:

∂u
∂x

=
∂v
∂y
,

∂u
∂y

= −∂v
∂x

,

and they are called Cauchy-Riemann’s equations for complex variables.
They are one of the most important examples of a PDE system with
extraordinary geometric and analytic consequences.
We see that ∇u = (a,−b) is orthogonal to ∇v = (b, a). Consequence: the level
lines u = c1 and c = c2 are orthogonal sets of curves.
The linear algebra of infinitesimal calculus at every point is not 4-dimensional but
two-dimensional. In fact, the system

du ∼ adx− bdy, dv ∼ bdx + ady,

can be written together in the complex form df ∼ Jf (z) dz , where Jf is the

Jacobian matrix that we begin to call f ′(z) = a + ib . We will assume from such
glorious moment on that this is the correct derivative of a 2-function of 2 variables
that is a candidate to be a good complex differentiable function.
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Riemmann, complex variables and 2-D fluids

Complex Variables, analysis and geometry

Hence, we know some magic formulas

f ′(z) = a + bi = fx, fy = −b + ai = if ′(z).

hence df = f ′dx along the x-axis, df = if ′dy along the y axis. Good.
Let us write the Jacobian

Jf (z) =
(

ux uy

vx vy

)
=
(

a −b
b a

)
= a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)
= aE + bJ.

This is an orthogonal matrix with determinant

det(Jf ) = a2 + b2 = u2
x + u2

y = u2
x + v2

x = v2
x + v2

y = u2
y + v2

y

which can be written as |Jf | = |f ′(z)|2 = ‖fx‖2 = ‖fy‖2 = ‖∇u‖2 = ‖∇u‖2.
The infinitesimal transformation preserves the angles (of tangent curves)
and amplifies the size by Jf = |f ′(z)|2.
If the 2-2 function f is CR, then it defines a conformal transformation of
the part of the plane where f ′(z) 6= 0. Riemann’s geometric theory of one
CV is based on this idea. ♠
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Riemmann, complex variables and 2-D fluids

Complex Variables and PDEs. Solving the
equations. Potential theory

How to find pairs of functions satisfying CR?
Of course, real and imaginary parts of algebraic complex functions satisfy
that. Also the Taylor Series of Weierstrass satisfies that.
But PDE people want their way. Here is the wonderful trick:

∆u = uxx + uyy = vyx + (−vx)y = 0.
Idem ∆v = 0. Solutions of this equation are harmonic functions, and they
count amount the most beautiful C∞ functions in analysis and the most
important in physics, where solving ∆u = −ρ means finding the potential
of ρ.
Potential functions live in all dimensions . But in d = 2 they produce
complex holomorphic functions. Given u we find v, its conjugate pair, by
integration of the differential form

dv = Pdx + Qdy, with P = vx = −uy,Q = vy = ux;

this is an exact differential thanks to CR.
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Riemmann, complex variables and 2-D fluids

Complex Variables and ideal fluids in d = 2

We will recall that Riemann was a friend of Weber, the famous physicist.
The velocity of a 2-D fluid is a field v = (v1(x, y), v2(x, y) . Irrotational
means that ∇× v = 0. Incompressible means ∇ · v = 0. For the PDE
person this is easy:

v2,x − v1,y = 0, v1,x + v2,y = 0.

Does it look like previous lesson? Yes, Combine both to get
∆v1 = ∆v2 = 0.
Is v2 harmonic conjugate to v1? No, but in fact, −v2 is.
Idea to eliminate sign problems. Go to the scalar potential of the vector
field v:

dΦ = v1dx + v2dy

(it is exact by irrotationality). Take the harmonic conjugate Ψ and define
the complex potential of the flow as F = Φ + iΨ , a chf. In that case

F′(z) = Fx = Φx + iΨx = Phix − iΦy = v.

Consequence: v = v1 − iv2 is a complex holomorphic function.
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Riemmann, complex variables and 2-D fluids

Some Pictures of 2D glory
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Riemmann, complex variables and 2-D fluids

Summary

THE BIG PICTURE IN 2D

There is an equivalence between holomorphic complex variable theory⇔
conformal geometry⇔ harmonic functions⇔ ideal fluids.
Any two dimensional, ideal fluid generates an analytic function and back,
and it is a conformal mapping and back. ♠
The complex derivative of the complex potential is just the conjugate of
the velocity field.
The stream function Ψ indicates the lines of current via Ψ = c.
What happens when F′(z) = 0, i.e., when v = 0?

These are singular points, called in physics the stagnation points. Many
things can happen on a singularity, essentially one thing may happen on
a regular point (⇒ the implicit function theorem). Riemann was an expert
in singular points.
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Riemmann and Geometry

Outline

1 Mathematics, Physics and PDEs
Origins of differential calculus
XVIII century
Modern times

2 G. F. B. Riemann

3 Riemmann, complex variables and 2-D fluids

4 Riemmann and Geometry

5 Riemmann and the PDEs of Physics
Picture gallery
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Riemmann and Geometry

From 2D to 3D

Riemann was able to understand very well the Two-Dimensional Space
with its functions, analysis, geometry and physics.
It is not as easy as it seems because complex holomorphic functions try
to follow their name and be globally defined, actually they have analytic
continuation.But they may have singularities blocking their way to global (global
is called here entire).
BR’s main contribution to 2D analysis+geometry is the concept of Riemann
surface with the curious branching points. A simple Riemann surface may be a
part of R3 but more complicated RS live in a very strange situation, a different
world.
But we want now to forget 2D and remember that we live in 3D. Thinking about
the geometry of 3D is old pastime, masterfully encoded by Euclides of
Alexandria (325 BC - 265 BC).
The 3D world is much more complicated that 2D and no part of the equivalence
between analysis, Taylor series, elementary PDEs, conformal geometry and ideal
Physics survives
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Riemmann and Geometry

What is Geometry according to BR

Let us follow the Encyclopædia Britannica article on BR.

In 1854 Riemann presented his ideas on geometry for the official postdoctoral
qualification at Göttingen; the elderly Gauss was an examiner and was greatly
impressed.

Riemann argued that the fundamental ingredients for geometry are a space of
points (called today a manifold) and a way of measuring distances along curves in
the space.

He argued that the space need not be ordinary Euclidean space and that it could
have any dimension (he even contemplated spaces of infinite dimension). Nor is it
necessary that the surface be drawn in its entirety in three-dimensional space.

It seems that Riemann was led to these ideas partly by his dislike of the
(Newton’s) concept of action at a distance in contemporary physics and by his
wish to endow space with the ability to transmit forces such as electromagnetism
and gravitation.

A few years later this inspired the Italian mathematician Eugenio Beltrami to
produce just such a description of non-Euclidean geometry, the first physically
plausible alternative to Euclidean geometry. More italians influenced by BR: Ricci,
Levi-Civita, Bianchi.
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Riemmann and Geometry

Habilitationsvortrag, 1854. Riemannian Geometry

Space around only has a definite sense locally around the place.
The basic tool to do geometry is the metric, which is given by

ds2 =
∑

gijdxidxj

It is local since it works on local entities, tangent vectors. Forget
Pithagoras but remember ds2 = dθ2 + sin2 θ dφ2 on the sphere.
The metric field changes from point to point, gij(x), x is locally a set like
Rd. He says for space of functions d =∞.
So there is no sense in principle of parallel vectors. We can instead define the derivative of
a tangent vector X =

∑
i aiei when we move along another vector Y =

∑
j bjei. This is the

famous covariant derivative ∇.

∇Y X =
∑

i

Y(ai)ei +
∑

ijk

aibjΓ
k
ijek.

For the correct covariant derivative, called Levi-Civita connection, the Christoffel symbols
are

Γk
ij =

1
2

gkl
(

∂gil

∂xj
+

∂gjl

∂xi
−

∂gij

∂xl

)
Objects with several indices are usually tensors. Note that although the Christoffel symbols
have three indices on them, they are not tensors. Sorry, coordinates are intuitive but messy!!
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Riemmann and Geometry

Curvatures at the center of geometry

Curvature tensor. The Riemann curvature tensor is given by

R(X, Y, Z) = ∇Y∇XZ −∇X∇Y Z +∇[X,Y]Z.

or the other sign. In that case we have

Ri
jkl =

∂Γi
jk

∂xl −
∂Γi

jl

∂xk + Γs
jkΓ

i
sl − Γs

jlΓ
i
sk.

Contraction gives the low tensor Rijkl = gimRm
jkl. Wikipedia gives

Riklm =
1
2

(
∂2

klgim + ∂2
imgkl − ∂2

kmgil − ∂2
ilgkm+

)
+ gnp(Γ

n
klΓ

p
im + Γn

kmΓp
il).

Ricci curvature. R.c. for g is a contraction of the general curvature tensor:

Rij =
∑

j

Rs
isj =

∑
s,m

gsmRisjm

The Ricci tensor has the same type (0, 2) (twice covariant) of the metric tensor. In
coordinates we have (Nirenberg’s sign, Wikipedia)

Rij =
∂Γl

ij

∂xl −
∂Γl

il

∂xj + Γl
ijΓ

m
lm − Γm

il Γ
l
jm.
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Riemmann and Geometry
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Riemmann and Geometry

The Laplacian operator in such geometries

Laplace-Beltrami operator. Here is the definition of the geometer’s Laplacian

∆g(u) = −gij(∂iju− Γk
ij∂ku) = − 1

|g|1/2 ∂i(|g|1/2gij∂ju)

This is minus the contraction of the second covariant derivative tensor

(∇2u)ij = ∂iju− Γk
ij∂ku

A coordinate chart (xk) is called harmonic chart iff ∆gxk = 0 for all i. Note that

∆g(xk) = −gijΓk
ij

Therefore, (xi) is harmonic iff gijΓk
ij = 0 for all k.

The Laplacian is correct for analysis because the formula∫
M

(∆gu) v dµ+

∫
M
〈∇gu,∇gv〉dµ = 0.

makes sense if you use the correct definitions.
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Riemmann and Geometry

Yamabe problem. Ricci flow
Let g be a metric in the conformal class of g0 with its Levi-Civita connection
denoted by D. We denote by R = Rg and R0 the scalar curvatures of the metrics g,
g0 resp. Write ∆0 for the Laplacian operator of g0. Then we can write

g = u4/(n−2)g0

locally on M for some positive smooth function u. Moreover, we have the formula

R = −u−NLu on M,

with N = (n + 2)/(n− 2) and

Lu = κ∆0u− R0u, κ =
4(n− 1)

n + 2
.

Note that ∆0 − n−2
4(n−1) R0 is the conformal Laplacian relative to the background

metric. Write equivalently, RguN = R0u− κ∆0u.

Yamabe Problem: given g0, R0, Rg find u.
This is a nonlinear elliptic equation for u.
You can now continue with Hamilton and Perelman.
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Riemmann and Geometry

General relativity. Einstein equation and tensor

Riemann’s ideas went further and turned out to provide the mathematical
foundation for the four-dimensional geometry of space-time in Einstein’s theory of
general relativity.
The Einstein tensor T is a 2-tensor defined over Riemannian manifolds which is
defined in index-free notation as

G = R− 1
2

Rg

where R is the Ricci tensor, g is the metric tensor and R is the Ricci scalar (or
scalar curvature). In components, the above equation reads

Gij = Rij −
1
2

Rgij,

Einstein field equations (EFE’s):

Gij =
8πG

c4 Tij

System of second order partial differential equations in 4 variables. The
stress-energy tensor T is a tensor quantity in relativity. It describes the flow of
energy and momentum and is therefore sometimes referred to as
energy-momentum tensor.
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Riemmann and the PDEs of Physics

Outline

1 Mathematics, Physics and PDEs
Origins of differential calculus
XVIII century
Modern times

2 G. F. B. Riemann

3 Riemmann, complex variables and 2-D fluids

4 Riemmann and Geometry

5 Riemmann and the PDEs of Physics
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Riemmann and the PDEs of Physics

Riemann’s interest in Physics

The influence of the famous experimental physicist W. Weber was
important in his view of mathematics.
Book. Riemann-Weber: Partial Differential Equations Of Mathematical
Physics. Die Partiellen Differentialgleichungen der Mathematischen
Physik. Nach Riemann’s Vorlesungen in vierter Auflage neu bearbeitet von
Heinrich Weber, Professor der Mathematik an der Universitât Strassburg.
Braunschweig, Friedrich Yieweg und Sohn. Erster Band, 1900, xvii + 506 pp.
Zweiter Band, 1901, xi + 527 pp.

Riemann’s lectures on the partial differential equations of mathematical physics and their
application to heat conduction, elasticity, and hydrodynamics were published after his
death by his former student, Hattendorff. Three editions appeared, the last in 1882; and
few books have proved so useful to the student of theoretical physics.The object of
Riemann’s lectures was twofold: first, to formulate the differential equations which are
based on the results of physical experiments or hypotheses; second, to integrate these
equations and explain their limitations and their application to special cases.
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Riemmann and the PDEs of Physics

”Ueber die Fortpflanzung...”, 1860. The equations of gas
dynamics

One-dimensional isentropic gas flow is a mathematical abstraction
described by the system of differential equations{

ut + u ux + px/ρ = 0,
ρt + (ρ u)x = 0 (1)

plus the algebraic equation p = p(ρ).
In the application module, x is interpreted length along a tube, whose transversal
dimensions are supposed to be irrelevant, u is interpreted as fluid particle speed
and ρ as density. The last law is called State Lawand for ideal gases it takes the
form p = Cργ where γ = 1, 4.
Determination of this γ really worried B Riemann as he says in the beginning of
his paper.
Write the equations in a mathematical way Ut + A(U)Ux = 0(

ut

ρt

)
+
(

u p′(ρ)/ρ
ρ u

) (
ux

ρx

)
=
(

0
0

)
. (2)
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Riemmann and the PDEs of Physics

Hyperbolic systems

In order to continue we do linear algebra, calculating the eigenvectors
and eigenvalues of the matrix A. We obtain

λ1 = u + c, λ2 = u− c

where c2 = p′(ρ) is called the speed of sound. Note that λ(u, ρ) so it
changes with (x, t) depending on the flow you solve at this time.
If ρ 6= 0 then c 6= 0 and we have two different eigenvalues and we are
entering with Riemann into the theory of NLHDS (Nonlinear Hyperbolic
Differential Systems), still frightening today. Peter Lax, Courant Institute,
Abel Prize winner, is a world leader in the topic.
We now get a map from (x, t) into (u, ρ), with two nice directions for the
linearization of the evolution equation,

Ut + A(U0)Ux = 0.

If you are Riemann this allows you to construct some magical coordinates
where the flow is not complicated.
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Riemmann and the PDEs of Physics

Riemann invariants
The eigenvectors of the system are

U1 = (c2/ρ, 1), U2 = (c2/ρ, 1)

Now Riemann tells us to find the characteristic lines: if we think that the
solution is known, then solve the ODE Systems

dx
dt

= λ(x, t,U)

He tells you then to find functions F1, F2, called the Riemann invariants,
which are independent and constant along the corresponding
characteristics. In the gas example they are

F± = u±
∫

c(ρ)
ρ

dρ.

Since these functions are constant on the characteristics, they allow to
see what the characteristics do and this says what the flow does at any
moment. Replace (u, ρ) by F1, F2 and try to see something
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Riemmann and the PDEs of Physics

Shocks

The theory BR develops allows to solve the system in a classical way iff
the characteristics of the same type for different points do not cross. In
that case the invariant takes two values, a shock appears.
Shocks appear in the examples even in d = 1, which is the Burger’s
equation

ut + u ux = 0

Since it happens in the simplest nontrivial mathematics, BR concludes
that you cannot avoid shock formation, and that a theory of solutions with
discontinuities that propagate in some magical way is needed. This is
today the theory of shocks and discontinuous solutions of conservation
laws.
Very soon the physical community recognizes this work as fundamental
new insight into the complexity inherent to compressible fluids.
Rankine and Hugoniot completed the work of Riemann when the gas is
not isentropic and the system is three dimensional. The old man had
committed an error in that general case!
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Riemmann and the PDEs of Physics

Shocks

The story of how discontinuous functions can be correct solutions of a
partial differential equation of mathematical physics, and even more
how important is what happens at the point where classical analysis
breaks down, is one of the deepest and most beautiful aspects of PDEs
in the 20th century. The catch word is entropy solutions, I have also worked
on this topic!

Before Riemann nobody really dared, after him all of us must!
Follow the whole shocking story in

* Chapter 3 of Chorin A., Marsden J. “A Mathematical Introduction to Fluid Mechanics”,
Springer, 1990,
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Morawetz. Courant Lecture Notes in Mathematics, 14. New York University, Courant
Institute of Mathematical Sciences, New York; American Mathematical Society, Providence,
RI, 2006.
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Riemmann and the PDEs of Physics Picture gallery

Some shock waves in Nature

(Left) Schlieren Image – Convection
Currents and Shock Waves, Steve
Butcher, Alex Crouse, and Loren
Winters – August, 2001

The projectiles were 0.222 calibre
bullets fired with a muzzle velocity of
1000 m/s (Mach 3).

The Schlieren lighting technique
used for these images makes density
gradients in fluids visible.

Color filtration provides false color
images in which the colors provide
information about density changes.
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Riemmann and the PDEs of Physics Picture gallery

Some shock waves in Nature
(Left) This Hubble telescope image
shows a small portion of a nebula
called the ”Cygnus Loop.”

This nebula is an expanding
blast wave from a stellar cataclysm,
a supernova explosion, which
occurred about 15,000 years ago.

The supernova blast wave, which
is moving from left to right across
the picture, has recently hit a cloud
of denser-than-average interstellar
gas.

This collision drives shock waves
into the cloud that heats interstellar
gas, causing it to glow.

Sandia Releases New Version of Shock Wave Physics Program:
http://composite.about.com/library/PR/2001/blsandia1.htm
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P D End

Danke schön, Herr Riemann!

Copyright JLV 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Riemann and Partial Differential Equations
“Jornada Riemann”, Barcelona, February 2008 38

/ 38



Riemmann and the PDEs of Physics Picture gallery

P D End

Danke schön, Herr Riemann!

Copyright JLV 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Riemann and Partial Differential Equations
“Jornada Riemann”, Barcelona, February 2008 38

/ 38



Riemmann and the PDEs of Physics Picture gallery

P D End

Danke schön, Herr Riemann!

Copyright JLV 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Riemann and Partial Differential Equations
“Jornada Riemann”, Barcelona, February 2008 38

/ 38


	Mathematics, Physics and PDEs
	Origins of differential calculus
	XVIII century
	Modern times

	G. F. B. Riemann
	Riemmann, complex variables and 2-D fluids
	Riemmann and Geometry
	Riemmann and the PDEs of Physics
	Picture gallery


