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Abstract. The purpose of this article is to describe some ways
in which Zeta functions enter geometry, and their relation to the
theory of Riemann surfaces.

Riemann’s collected works take one small volume, but every contribu-
tion to this volume was very original work that supplied foundations
for the mathematics of the next century.

To give an idea of his range of interests, and of his influence up to recent
times, I will first describe briefly three areas which bear his name:

(1) Riemann Zeta function (number theory)
(2) Riemann surfaces (algebraic geometry-topology)
(3) Riemannian metric (fundamental in differential geometry)

Then I will review three examples where these areas interact. They
are three examples of work in the 20th century which have their roots
in the ideas of Riemann. The first one will be a theorem of the 1930’s
which involves the interaction of (2) and (3) on this list. Next one will
be a theorem of the 1950’s, also involving the interation of algebraic
topology/geometry with differential geometry. And the last one will
be a theorem of the 1980’s which involves in fact all three, including
number theory.

In summary, the main points will be:

• Review the three topics (1), (2) and (3) above.
• A theorem of 1930’s involving (2) and (3).
• A theorem of 1950’s involving (2) and (3).
• A theorem of 1980’s involving (1), (2) and (3).
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Riemann Zeta function

It is the function

ζ(s) =

∞
∑

n=1

1

ns
, s ∈ C.

This function converges for Re(s) > 1 and has analytic continuation to
whole complex s-plane with a simple pole at s = 1. For s = 0 we have
ζ(0) = 1/2.

Functional equation. If we write

ξ(s) =
s(s − 1)

2
Γ(s/2)π−s/2ζ(s)

then

ξ(s) = ξ(1 − s).

Euler product

ζ(s) =
∏

p

(1 − p−s)−1

where the product ranges over the primes p.

Riemann Hypothesis (106 dollar prize). It is the most famous
unsolved problem since Riemann’s time and it is about the zeros of the
Riemann zeta function.

The “trivial zeros” of ζ(s) occur at s = −2,−4, ... (even negative inte-
gers).

The Riemann hypothesis states that all non-trivial zeros of ζ(s) lie on

the line Re(s) = 1/2.

It has very important consequences for the detailed distribution of
prime numbers.

Riemann surfaces

Adding the point at infinity (∞) to the complex plane C we get the
Riemann sphere.
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The complex solutions (x, y) of the equation

y2 = f(x), f quartic polynomial

(including ∞) form a complex torus. It is a double covering of the
sphere with 4 branch points at the 4 roots of f(x) = 0 (assumed dis-
tinct).

The sphere leads to the theory of rational functions and the torus to
the theory of elliptic functions.

Higher degree polynomial equations p(x, y) = 0 lead to a theory of
functions involving surfaces of higher genus.1 These are called Riemann

surfaces. Here is a picture of a genus 3 surface:

The genus is a topological invariant. It is B1/2, where B1 is the first
Betti number, or the rank of the first homology group, which agrees
with the number of independent 1-cycles that can be drawn on the
surface. For a torus, for example, two independent cycles are one going

1The genus g of a compact orientable surface is the number of its handles or
holes. Thus g = 0 for the sphere and g = 1 for the torus.
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around the hole and one around the tube. In general, for each hole we
have one more pair, which means 2g in all.

On the Riemann surface we have a relationship with analysis. We can
write down what are called holomorphic differentials. If z is a local
coordinate on the surface, a holomorphic differential has (locally) the
form

f(z)dz,

where f is a holomorphic function. If we make a change of variable
from one region to another one, say z = z(u), then f(z)dz becomes
f(z(u))z′(u)du. Now the genus g is the dimension of the space of holo-

morphic differentials. For example, if g = 0 there are no non-zero
holomorphic differentials. The key fact is that if z is the usual coordi-
nate on the complex plane, then u = 1/z is a local coordinate at ∞ and
dz = −du/u2 has a pole there. On the other hand on the torus, thought
of as the quotient C/L of C by a lattice L, dz is a holomorphic dif-
ferential, and this differential is unique up to scalar factor. For higher
genus there are more complicated formulas giving the g independent
holomorphic differentials.

Thus we have a fundamental link between the topology (the number
of holes) and the analysis (the description of the holomorphic differen-
tials). Holomorphic differentials occur as integrands of integrals along
curves. In fact, that is how the theory of elliptic integrals first arose.

The Riemannian metric

The Riemannian metric is the foundation of modern differential geom-
etry. It has an interesting beginning, because when Riemann was to
submit his thesis for a doctoral degree the custum in Germany of the
time was that the examiners would ask him some minor topic outside
of the main topic of interest. Gauss asked Riemann to investigate the
foundations of geometry. I think he knew that Riemann had ideas,
and Riemann’s answer was to produce the foundations of differential
geometry –as a side issue to the main thesis.

On an n-dimensional manifold, which locally looks like an Euclidean
space with n real coordinates x1, . . . , xn, a Riemannian metric, which is
a way of measuring distances, is a symmetric positive definite quadratic
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form
ds2 =

∑

i,j

gijdxidxj ,

with the gij varying smoothly. That gives the element of length, ds,
and the length of a curve is then given by integrating ds along it.

What Riemann discovered was that the most essential and important
object that can be associated with the Riemannian metric is what is
called the Riemann curvature tensor : An expression Rijkl, given by
a quite simple formula involving the gij and their derivatives, which
describes all the fundamental ways in which geometry is curved.

Note that a Riemann surface is at the same time, a 1-dimensional
complex manifold and a 2-dimensional Riemannian manifold, where
the real coordinates are the real and imaginary part of the complex
coordinate.

Examples of Riemannian manifolds

(1) Take an ordinary smooth surface in 3-dimensional space, as
for instance a sphere, and restrict to it the ordinary Euclidean
metric. This gives a way of measuring lengths of curves on the
surface.

(2) We can do similar things in higher dimensions. Consider a non-
singular algebraic curve in the the complex projective plane
CP2, which has real dimension 4. It is given by an equation

fd(x, y, z) = 0,

where fd is a homogeneous polynomial of degree d, and its genus
g = 1

2
(d− 1)(d− 2). This curve acquires a natural Riemannian

metric, namely, the metric induced on it by the standard metric
in CP2.

(3) Similarly, a non-singular algebraic surface fd(x, y, z, t) = 0 in
CP3 with the induced metric.

Note. The Riemannian curvature tensor has four indices i, j, k, l in
all dimensions, but it reduces to a scalar function in dimension 2, the
Gauss scalar curvature, and it is essentially a 2-tensor in dimension 3
(the Ricci tensor). Dimension 4 is the first dimension in which the most
general form of the curvature tensor is required. It is the dimension
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of Einstein’s space-time, in which Riemannian ideas, and especially
Riemann’s curvature tensor, played a very important role. It is also
the dimension of Simon Donaldson’s theory, in which he applied ideas
of Riemannian geometry and got many fantastic results showing that 4
real dimensions in some ways are quite unique amongst all dimensions.

Hodge theory (1930’s)

Consider an n-dimensional real manifold, compact and oriented, with
a Riemannian metric. Hodge considered the exterior differential forms
Ωq, the natural integrands of q-dimensional integrals (q = 0, 1, ..., n).
They are skew-symmetric q-tensors. Thus Ω0 are the scalar functions
f(x), and Ω1 the forms of degree 1 (locally,

∑

i fi(x)dxi). Higher degree
forms Ωq involve wedge products (skew symmetric) of any q of the
dx1, . . . , dxn. For q = n there is only one such product (a volume form).
There is also the exterior differentiation operator, d : Ωq−1 → Ωq, which
gives rise to the De Rham complex :

Ω0 d−→ Ω1 d−→ Ω2 d−→ Ω3 d−→ · · · d−→ Ωn

The metric defines a dual or orthogonal form ∗ω ∈ Ωn−q associated to
a q-form ω ∈ Ωq. In particular, if f is a function, ∗f is a volume form.

In Hodge theory, a form ω is called harmonic if dω = 0 and d ∗ ω = 0.
One of Hodge’s motivations for introducing this concept was the fact
that the electromagnetic field can be represented by a 2-form ω in
Minkowski space and that Maxwell’s equations are then equivalent to
dω = 0 and d ∗ ω = 0.

Another equivalent way of defining harmonic forms is the following.
Define

d∗ : Ωq → Ωq−1

as the adjoint of d (if n is even, d∗ = − ∗ d∗) and let

∆ = dd∗ + d∗d : Ωq → Ωq.

This operator is the Hodge Laplacian and ∆ϕ = 0 is equivalent to
saying that ϕ is harmonic. This fact explains why they are called ‘har-
monic’, as ∆ϕ is the ordinary Laplacian for a function ϕ in Euclidean
space.
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The fundamental theorem of Hodge was a simple relationship between
the harmonic forms and the topology:

Theorem. The space of harmonic q-forms is isomorphic the real co-

homology space Hq (the map is given ω 7→
∫

γ
ω, γ any q-cycle).

The expression
∫

γ
ω is called the period of ω along γ, and the theorem

says that every harmonic form is determined by its periods and that
every ‘period’ can actually occur.

For example, on a Riemann surface the harmonic 1-forms, for an ap-
propriate metric, are the real and imaginary parts of the holomorphic
forms. Note that this implies that dim H1 = 2g.2

Now a big problem was going from algebraic curves to higher dimen-
sions (algebraic surfaces, for example) and replacing the holomorphic
differentials. Hodge’s great idea was using a Riemannian metric and
taking harmonic forms. That was the beginning of the foundations of
modern algebraic geometry.

Signature of a 4-manifold

For n = 2 (surface) the only topological invariant is the genus g (or
B1 = 2g).

For n = 4 we have

B1 = B3 and B2.

But there is a further invariant on H2 (or H2): the intersection form (or
intersection matrix), H2 × H2 → R. This pairing is a non-degenerate
quadratic form. Now a quadratic form over the real numbers has an-
other invariant, aside from the rank, namely the signature. When
diagonalized, it has B+

2 positive terms and B−
2 negative terms, where

B2 = B+
2 + B−

2 (no zeros, as it is non-degnerate), and the signature is
B+

2 − B−
2 . This signature is called the signature of the manifold, and

it is another topological invariant.

2Another way of saying this is that the complex valued harmonic forms on the
surface are the holomorphic and antiholomorphic forms.
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Note. There is no analogue of the signature in dimension 2, since
the intersection pairing is skew-symmetric: (21) is an odd permutation
while (3412) is an even permutation.

This signature invariant for quadratic forms was known for a long time,
but its applications to manifolds topology were first pointed out by
Hermann Weyl, another of my heroes in mathematics. Interestingly
enough for this audience, it was published in a Spanish journal, in
Spanish, in an old paper that is not very well known.

Let’s connect this with the work of Hodge in differential geometry.
On a 4-manifold M , the ∗ operator acts on Ω2 and ∗2 = 1. The
corresponding eigenspaces H2

+ and H2
− have dimensions B+

2 and B−
2 ,

respectively. Hence

signature = dim H2
+ − dim H2

−.

By a famous theorem of Hirzebruch (1950’s),

signature =

∫

M

f(R),

where f is a polynomial in the curvature. This beautiful theorem
connects topology on one side with differential geometry on the other
and it is the first of a large family of theorems of this kind. It is part of
a big development in the 1950’s. Hirzebruch proved that the theorem
also holds in dimensions n = 4k (with f depending on k).

Hirzebruch’s result was for closed manifolds. So the natural question
now is to ask what happens for manifolds with boundary.

M

B

Choose a Riemannian metric on M which is isometric to the product
B × R near the boundary:

ds2
M = ds2

B + dr2.

Then f(R) = 0 on B × R and therefore
∫

M
f(R) is independent of the

length of the boundary region.
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The signature is still defined on H2(M, B), but the (diagonal) matrix
has some zeros. Count only non-zero diagonal elements.

Question. Is signature(M) =
∫

M
f(R)?

Answer. No.

But we have:

Proposition. The difference between the signature and
∫

M
f(R), which

is called the singnature defect, depends only on the boundary.

Proof. If B = ∂M and B = ∂M ′, stick M and M ′ together along B to
get a manifold X without boundary.

M M'
B

Then we have

signature(X) = signature(M) + signature(M ′),
∫

X

f(R) =

∫

M

f(R) +

∫

M ′

f(R),

and it is enough to subtract and use Hirzebruch’s theorem for X (a
sign change occurs for M ′ since its boundary is B with the opposite
orientation). �

Problem. What kind of invariant of the Riemannian 3-manifold B is
the signature defect?

Note. The signature defect changes sign when we reverse the orienta-
tion of B.

To solve the problem, introduce the 1st order elliptic differential oper-
ator A acting on

Ωev = Ω0 ⊕ Ω2,

A = ±(∗d − d∗) [− on Ω2, + on Ω0].
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It is self-adjoint (A∗ = A) and3

A2 = ∆0 ⊕ ∆2 (Hodge Laplacian).

The eigenvalues λ of A are discrete and λ2 are the eigenvalues of ∆0 ⊕
∆2. The eigenvalue λ = 0 gives the harmonic forms H0 ⊕ H2. Define

η(s) =
∑

λ6=0

sign(λ)

|λ|s .

The function η(s) converges for Re(s) > 3 (because 3 = dim(B)) and
has an analytical continuation with no pole at s = 0 (so η(0) is well
defined).

Theorem (Atiyah–Patodi–Singer, 1970’s).

signature(M) =

∫

M

f(R) − η(0).

See [APS] and [Atiyah].

Note. 1) Reversing orientation changes

∗ to − ∗
A to − A

λ to − λ

If follows that η(0) changes to −η(0), and this behaviour checks with
the theorem.

2) In classical notation for R3, and identifying a 2-form with a vector
field,

A =

(

0 div
grad curl

)

The theorem shows that the signature defect is a spectral invariant. It
measures the degree to which the positive eigenvalues and the negative
eigenvalues differ. If they are the same (for example if the manifold has
an orientation reversing isometry), then the signature defect is 0, as the
positive eigenvalues pair up one by one with the negative eigenvalues.
In general they are not the same, and we say that the signature defect
measures the spectral asymetry.

3 A2 is the square of the operator A, while ∆2 simply refers to the Hodge Lapla-
cian on 2-forms.
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Example involving number theory

Here we will consider an example of an interesting application of the
APS theorem.

Let B be the 2-torus bundle over a circle defined by an automorphism

of T 2 = R2/Z2, i.e., an element A =

(

a b
c d

)

of SL(2, Z).

A

T
2

T
2

Note that SL(2, Z) gives linear automorphisms of R2 that map the
lattice Z2 onto itself. We have det(A) = ad − bc = 1 and we will
assume that a + d = trace(A) > 2. This implies that the eigenvalues
of A, namely the roots λ and λ′ = 1/λ of

λ2 − (a + d)λ + 1 = 0,

are real and positive, as its discriminant ∆ = (a + d)2 − 4 > 0.

This situation arises in number theory from the real quadratic field

K = Q(
√

∆).

Let us examine more carefully the matrix A. Over R, it is conju-

gate to the diagonal matrix

(

λ
λ′

)

and we have a 1-parameter group

At ∼
(

λt

(λ′)t

)

. The orbits of At in the (x, y) plane are (branches of)

hyperbolas whose asymptotes are given by the equation of the eigen-
vectors (N is the norm):

N(y, x) = 0,

where

N(y, x) = cy2 + (d − a)xy − bx2 = c(y − αx)(y − βx),
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with

α =
(a − d) +

√
∆

2c
, β =

(a − d) −
√

∆

2c
and

∆ = (d − a)2 + 4bc = (a + d)2 − 4.

Assume c < 0.

N <             0

N >             0

N <             0

N >             0

Since A ∈ SL(2, Z), it preserves each branch and maps integer points
to integer points, so branches that have one integer point actually have
infinitely many. Since the norm is constant along a branch, N is an
integer for branches containing an integer point.

Zeta function of K = Q(
√

(∆)):

ζA(s) =
∑

(γ)

1

|N(γ)|s ,

where γ = (m, n) is an integer lattice point and we sum over the non-
zero orbits (γ) of {A} (the group generated by A).

ζA converges for Re(s) > 1, has analytic continuation, with no pole at
s = 0, and has an Euler product expansion.

L-function of K = Q(
√

(∆)):

LA(s) =
∑ sign(N(γ))

|N(γ)|s
over the non-zero integer orbits of {A}. It has similar properties to
ζA(s).

ζA(0) is well-defined (actually it is a rational number).
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Theorem (Atiyah–Donnelly–Singer, 1980’s).

LA(0) = ηA(0)

where A ∈ SL(2, Z).

Notes. 1) L(s) and η(s) are very different analytic functions:

• L(s) converges for Re(s) > 1
• η(s) converges for Re(s) > 3.

But the theorem can be proved by using Fourier series on T 2, an ap-
proach that was initiated by Carl L. Siegel.

2) The theorem generalizes to any totally real field K of any degree:

• B becomes a T r bundle over T r−1, where r is the rank of the
integers in K (and r − 1 the rank of the group of units of K).

3) The theorem is also related to algebraic geometry. Hirzebruch proved
[Hirz] that the signature defect of a 3-manifold B is LA(0) by a direct

method related to the periodic continued fraction of
√

∆ and the res-
olution of the cusp singularities of an algebraic surface. This provided

B
Cusp

one motivation for the ADS theorem, as it led to a conjectured gener-
alization to higher degree fields. See [ADS].
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