
DUALITY IN MATHEMATICS AND PHYSICS∗

SIR MICHAEL F. ATIYAH

Abstract. Duality is one of the oldest and most fruitful ideas in
Mathematics. I will survey its history, showing how it has con-
stantly been generalized and has guided the development of Math-
ematics. I will bring it up to date by discussing some of the most
recent ideas and conjectures in both Mathematics and Physics.

Introductory remarks

Duality in mathematics is not a theorem, but a “principle”. It has a
simple origin, it is very powerful and useful, and has a long history going
back hundreds of years. Over time it has been adapted and modified
and so we can still use it in novel situations. It appears in many
subjects in mathematics (geometry, algebra, analysis) and in physics.
Fundamentally, duality gives two different points of view of looking at

the same object. There are many things that have two different points
of view and in principle they are all dualities.

Linear duality in the plane. It starts off classically in geometry
with linear duality in the plane.

In the plane we have points and lines. Two different points can be
joined by a unique line. Two different lines meet in one point unless

∗ Editorial note. On December 18, 2007, Atiyah delivered the lecture Rie-

mann’s Influence in Geometry, Analysis and Number Theory at the Facultat de
Matemàtiques i Estad́ıstica of the Universitat Politècnica de Catalunya and the
lecture Duality in Mathematics and Physics, this one sponsored by the Centre de
Recerca Matemàtica (CRM), at the Institut de Matemàtica de la Universitat de
Barcelona (IMUB). The present text has been produced from a transcription of
the second lecture and can be downloaded from the web pages www.imub.ub.es or
www-fme.upc.edu. The text of the first lecture can also be downloaded from the
latter web page.
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they are parallel. People did not like this exception and so they worked
hard and realized that if they added some points at infinity then they
got what is called the projective plane in which the duality is perfect:
the relationship between points and lines is perfectly symmetrical. This
led to the classical principle of projective duality, which says that the
“dual statement” of a theorem is also a theorem, so that we can talk
about the dual theorem.

Linear algebra. In linear algebra duality involves the pairing

〈ξ, x〉 =
∑

i

ξixi

of dual vector spaces.

For example, let n = 3. If we fix a ξ, then the equation 〈ξ, x〉 = 0
gives a linear condition on x which determines a plane in 3-dimensional
vector space. On the other hand if we fix x and let ξ vary, then we get
a plane in the dual space. These are vector spaces and if we factor out
by homogeneous coordinates (this leads to one dimension lower) we get
the lines of the projective plane. So the relationship between projective
geometry and linear algebra is very simple: we write equations and we
identify those that differ by a non-zero scalar factor.

Linear analysis

When we go from linear algebra to linear analysis, in principle we make
n = ∞ (infinite dimension linear spaces), and we have to be careful
about questions of convergence. Formal infinite series do not make
sense and so we have to have suitable continuity conditions.

Example. If we have functions of one variable x, then we can define
the 〈f, g〉 of two functions f and g by

〈f, g〉 =

∫
f(x)g(x)dx.



DUALITY 71

Assuming that the integral converges, this defines a pairing which is
an ∞-dimensional version of the finite pairing of linear algebra. So
immediately the ideas of duality go (provided we are careful about
convergence) into linear analysis.

Fourier transform. Now in linear analysis one of the most power-
ful tools is that of Fourier theory. Let us recall what is the Fourier

transform. Let x = (x1, . . . , xn) be n variables and ξ = (ξ1, . . . , ξn)
corresponding ‘dual’ variables. Then given a function f(x), its Fourier

transform f̂(ξ) is defined by

f̂(ξ) =

∫
f(x) exp(2πi〈x, ξ〉)dx.

Fourier series. We can also have Fourier series, which in fact are
more elementary. If we have a function f(x) of the variable x which is
periodic (it is a function defined on the circle ∼= R/Z), then we have
Fourier coefficients an:

an =

∫
f(x) exp(2πinx)dx.

This transforms functions on the circle R/Z to functions on the integers
Z. The inversion formula says how to go backwards.1 In this example
we see that the two things that are dual need not be of the same kind.
In linear duality usually the two sides are the same sort of thing, but
here one side is a circle and the other side are the integers, but it is
still an example of duality.

Poisson summation formula. This is a very useful formula in con-
nection with the theory of Fourier series. It uses Fourier theory on R

and on R/Z and it says, given a function f , that∑
f(n) = c

∑
f̂(n),

c a suitable constant. In the particular case when the function is the
Gaussian f(x) = exp(−x2), and taking into account that its Fourier

1 f(x) =
∑

n an exp(−2πinx)
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transform f̂ is also Gaussian, we get the famous transformation law2

Θ(−1/z) = (−iz)1/2Θ(z)

of the theta function

Θ(z) =
∑

n

exp(πin2z).

Besides this formula we have another obvious relation:

Θ(z + 2) = Θ(z).

The two operations z 7→ z + 2 and z 7→ −1/z generate a subgroup of
index two the modular group SL(2, Z) (we would get the whole group
SL(2, Z) if we had the condition Θ(z + 1) = Θ(z)). A function which
transforms according to such laws under this group is called a modular

form. They are very important things in arithmetic and the Θ modular

form is one of the most classical examples. As we see, modular forms
turn up in connection with dualities in Fourier theory. This is of course
all very classical, as it was known to Riemann and to people before him.

Duality for Abelian groups

The real line, the circle and the integers are different-looking things.
But in fact they are all abelian groups, and for these groups there is
a duality theory. Given an abelian group G, the dual group Ĝ is the
group of characters of G (homomorphisms of G to the circle group
U(1)):

Ĝ = Hom(G, U(1)).

Examples. 1) If G = Z, Ĝ = S1 (circle of radius 1), where x ∈ S1 ∼=
R/Z corresponds to the homomorphism n 7→ exp(2πinx).

2) If G = R, Ĝ = R.

3) If G is discrete, then Ĝ is a compact group (like S1 = Ĝ for G = Z).

The general class of abelian groups for which duality theory works are
the locally compact topological abelian groups. This class includes the
groups R, S1 and Z, and also others. If G is finite (hence it is both

2 This relation gives one of the ways in which the functional equation for the
Riemann ζ function can be proved.
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discrete and compact), then Ĝ is finite. Besides the examples given,
there are also important examples in number theory, as the group of
p-adic integers:

Zp = lim
←−

Z/pnZ.

Fourier theory works also in this case and is important in applications
in number theory.

Non-Abelian groups

Abelian groups give a unifying framework for these classical dualities.
We have a good theorem, but it is natural to try to go beyond that. In
that regard a reasonable aim is to look at non-abelian groups.

(1) Let us start with a (non-abelian) finite group G. Introduce the

set Ĝ of (isomorphism classes) of irreducible unitary representations

Hom(G, U(n)), which is is called the dual of G. It is not a group
anymore, it is only a (finite) set.

(2) Consider now a compact Lie group G, like for example the orthog-

onal group O(n). Then the dual Ĝ, defined as the set of (isomorphism
classes of) irreducible unitary representations, is an infinite discrete

set.

Fourier theory. For any class function f on G, there is a Fourier
expansion

f(g) =
∑
χ∈Ĝ

aχχ(g), aχ =

∫
G

f(g)χ(g)dg.

The notation χ ∈ Ĝ indicates that the sum is extended over all ir-
reducible characters χ of G.3 It may be finite or an infinite series
depending on the group G.

3 The character χ = χρ of a unitary representation ρ : G → U(n) of G is
the function χ : G → C defined by χ(g) = trace(ρ(g)). It only depends on the
isomorphism class of the representation. The character is said to be irreducible if
the representation is irreducible. The mapping of isomorphism classes of irreducible
representations to irreducible characters is one-to-one.
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(3) Non-compact Lie groups. In this case the theory gets more
difficult. Let G be a non-compact Lie group, as for example the gen-
eral linear group GL(n). Then Ĝ should be the set of isomorphism
classes of irreducible representations, including those that are infinite
dimensional (i.e., representations in Hilbert space). If G satisfies some

conditions, Ĝ is a set with a measure on it (the Plancherel measure dµ)
and for any class function f on G the Fourier inversion formula is

f(g) =

∫
Ĝ

f̂(χ)χ(g)dµ, f̂(g) =

∫
G

f(g)χ(g)dg.

This theory, valid for semisimple Lie groups, is due to Harish-Chandra.
It involves infinite-dimensional spaces and continuous parameters, but
it is very satisfactory as it generalizes all the other cases.

Non-linear geometry

After the preceding excursions to algebra and to groups, let us go back
to geometry.

Suppose we have an n-dimensional manifold which is compact and
oriented. Then we can define the homology groups, which are given by
cycles of various dimensions up to the maximum dimension n. If q is
an integer, 0 ≤ q ≤ n, we can define the homology group in dimension
q, Hq. It is a finite dimensional vector space if we use real coefficients.
Then we also have cycles in the complementary dimension, n−q, which
give the homology group (space) Hn−q.

Intersection pairing. If we have a cycle of dimension q and a cycle
of dimension n − q in general position, then they intersect in finitely
many points and so we get an intersection number.

From this it is possible to construct a pairing of real vector spaces

Hq ⊗ Hn−q → R

(the proof uses the local Euclidean nature of the manifold).



DUALITY 75

Poincaré duality. The pairing above is non-degenerate. Therefore
each of the homology spaces Hq and Hn−q becomes the dual of the
other. Thus we obtain a duality between finite-dimensional vector
spaces from a curved manifold. In particular, dim Hn−q = dim Hq.

Poincaré duality actually works at the global level of topology and it
is a very important tool in for the study of the topology of higher
dimensional manifolds.

Hodge theory

Another way of examining this, which is a combination of geometry
and analysis, is to use Hodge theory. Given an n-dimensional manifold
M , let us consider, instead of cycles, differential forms. The differential
forms of degree q, which form a space that we will denote Ωq, are the
natural integrands of integrals on cycles of dimension q.

We will also use the derivative operator

d : Ωq → Ωq+1.

The α ∈ Ωq such that dα = 0 are said to be closed forms.

Now if we have α ∈ Ωq and β ∈ Ωn−q, then the wedge product α ∧ β
is an n-form (also called a volume form). This form can be integrated
over M , ∫

M

α ∧ β,

and this gives a bilinear pairing

Ωq × Ωn−q → R

under which Ωq and Ωn−q are dual ∞-dimensional spaces.

Given a Riemannian metric on M , we also have the Hodge duality
operator ∗ : Ωq → Ωn−q that is defined by the relation (α, β ∈ Ωq)∫

M

α ∧ ∗β = (α, β),

where (α, β) denotes the pairing of α and β by the natural extension
of the Riemannian metric to Ωq.
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Hodge theory is concerned with the solutions (called harmonic forms)
of the two equations

dω = 0, d ∗ ω = 0.

Thus ω is harmonic if and only if ω and ∗ω are closed.

Hodge theorem. The space Hq of harmonic forms of degree q has
finite dimension and is isomorphic to the cohomology space of dimen-
sion q. Moreover, ∗ : Hq → Hn−q is an isomorphism. In particular,
Hq and Hn−q are dual finite dimensional spaces (Poincaré duality) and
dim Hq = dim Hn−q.

This theorem provides a reinterpretation of the geometrical duality
using harmonic forms.

Physics

Now we go to (classical) physics.

1. Position-momentum. Here is an elementary situation. Let x be
a variable in ordinary space (it may describe the position of a particle)
and a dual variable ξ (it may represent momentum of the same parti-
cle). The the Fourier transform gives rise to “dual pictures”, which is
what physicists call spectral analysis.

2. Quantum mechanics. In quantum mechanics, there is the famous
particle-wave duality. Duality appears here as two ways of looking at
the same thing: either a particle behaves like a point going around
or as (quantum) wave. These two aspects are part of the mystery of
quantum mechanics.

3. Electromagnetism. In ordinary Minkowski space R3,1, the elec-
tromagnetic force is described by a 2-form (skew-symmetric 2-tensor)
ω. In this notation, Maxwell’s equations in vacuo are

dω = 0, d ∗ ω = 0,

where now ∗ is defined using the Lorentz metric in R3,1. Formally
they are the same as Hodge equations for forms of degree 2 on a
4-dimensional Riemannian manifold, but here the space is ordinary
Minkowski space, not the 4-dimensional Euclidean space. From this it
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appears that Maxwell’s equations, which unified electricity and mag-
netism, also encode a duality between electricity and magnetism in the
sense that the ∗ operator interchanges both aspects. Physically, this is
a very fundamental fact of the universe.

Maxwell’s equations actually motivated Hodge for his work on har-
monic forms in general. As indicated, Maxwell’s equations are about
forms of degree 2 in 4 dimensions and Hodge went to forms of any
degree q in any dimension n. He also worked in Riemannian geometry,
not in Minkowski space.

Modern Physics: Gauge-Theory

A lot of modern physics is concerned about gauge theory. This is what
physicists use to describe elementary particles. In some naive sense it
is just a (non-abelian, non-linear) matrix generalization of Maxwell’s
theory.

A Yang-Mills field F is the curvature of a connection4 on a fibre bundle
(F may be thought as a as a 2-form with matrix coefficients, or as a
matrix of 2-forms). Then the Yang-Mills equations take the same form
again:

dF = 0, d ∗ F = 0.

These are now matrix equations. When defined on Lorentz manifolds,
they are the fundamental equations that physicists use for elementary
particle physics. They can also be defined on a Riemannian 4-manifold,
and this leads to geometry, as in Donaldson’s celebrated theory, one of
the most exciting developments in the last quarter of the 20th century.
In particular it produced new invariants of 4-manifolds. The physics
inspired the equations and then Donaldson used the equations, in the
context of Riemannian geometry, to develop his theory.

This was just mathematics. We might say that mathematicians took
an equation that the physicists had written down and studied it in
the Riemannian context, just as Hodge did with Maxwell’s equations.
But subsequently Witten showed ([W94]) that what Donaldson did
could be understood in the language of physics. In fact, he interpreted

4 In gauge theory, connections play the role of potentials.
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Donaldson’s theory as a Topological Quantum Field Theory, which can
be thought of as a “non-abelian Hodge theory”.

Going beyond ordinary quantum mechanics, which describes the quan-
tum behaviour of particles, quantum field theory (QFT) describes the
quantum behaviour of fields, like the electromagnetic field. Usually
quantum field theory supplies information about real particles and their
interactions.

In the special case of a topological quantum field theories, the only
things that can be extracted are topological invariants. These theories
supply discrete quantities that have a topological meaning, not real
numbers that can vary continuously. Donaldson’s invariants, for exam-
ple, turned out to be, as shown by Witten, instances of such topological
invariants of a QFT. This physical interpretation of Donaldson’s the-
ory made the link between physics and mathematics much easier to
understand.

One of the most exciting things that physicists have discovered is that
in QFT there are many dualities which are not at all easy to under-
stand geometrically. These theories are non-linear, and so they are not
trivial. An important observation here is that if we have a given clas-
sical geometrical picture, then there is some kind of procedure, called
‘quantization’, by which we replace classical variables by operators to
produce, with a bit of guesswork, a ‘quantization’ of the original the-
ory. In this quantized theory there is a parameter that plays the role
of Planck’s constant and which allows us to recover the classical the-
ory by letting it go to 0. Given a quantum theory, however, it may
turn out that there are several ways in which it can be realized as the
quantization of a classical geometry picture. For example, for a single
classical particle we can use the position observable or the momentum
observable (they are actually symmetrical), and so there are two ways
of reaching the same theory from two geometrical points of view. Then
these two points of view are called a duality. This is, of course, a very
simple example, but it turns out that physicists have found many much
deeper dualities which exist in complicated QFTs which link two very
different-looking geometric pictures.
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Example: Donaldson’s theory. A first example of such a duality is
that Donaldson’s theory, which has been very roughly described above,
is “dual” to Seiberg–Witten theory. Physicists predicted that these two
theories should be equivalent, in the sense that one quantum theory has
two different descriptions: one in terms of Donaldson’s geometry and
the other in terms of Seiberg–Witten geometry.

In Donaldson’s theory we just take 2 × 2 matrices and write down
equations analogous to Mawwell’s equations. In Seiberg–Witten the-
ory, instead of 2 × 2 matrices, the ordinary circle group is used, and
Maxwell’s equations for the (classical) electro-magnetic field, but cou-
pled to a spinor field.

Spinors are very important things in physics (they describe particles
like the electron) and they turn out to be mysteriously important in
geometry. Their geometrical meaning is much more difficult to un-
derstand than differential forms, but they exist and they are beauti-
ful geometrical objects. They satisfy the famous equation introduced
by Dirac (the Dirac equation), which is a linear equation for spinors
like Maxwell’s equations are for the electro-magnetic field, but now the
spinors and the electro-magnetic field can be coupled together. The rea-
son that they can be coupled together is fairly simple algebra: spinors
can be multiplied together and the results are differential forms (not
a single degree, but all degrees simultaneously). So spinors are like
square roots of differential forms, and that explains why they are so
mysterious.5

So Spinors×Spinors=Forms. If the form obtained as the product of
two spinors is related to Maxwell’s equations, we get equations that are
quadratic, and therefore non-linear. So there is a non-linear coupling
between spinor fields and the electro-magnetic field and this coupling
gives rise to a system of equations that are called the Seiberg–Witten

equations. They involve on one hand spinors, which satisfy Dirac’s

5 One of the most fantastic discoveries in mathematics was the invention of the
square root of −1. It took 200 years to understand, and even when it was understood
Gauss said that “the real metaphysics of the square root of −1 is not simple”. In
a similar way, spinors are something like trying to understand the square root of
‘area’, or the square root of ‘volume’. What does that mean? Very mysterious
notions, but nevertheless spinors exist in a formal way and can be used in formulas
just as i is used all the time in mathematics and physics.
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equation, and involve also the electromagnetic field, which satisfies not
just the pure Maxwell equations, but the Maxwell equation with a
right hand side which is constructed from a spinor roughly speaking by
squaring.

The Seiberg–Witten equations are, in some ways, very elementary
equations, more elementary than the matrices that Donaldson used,
but they are not linear—otherwise they would be rather trivial. What
was predicted, on the grounds of physics intuition, was that Donald-
son theory and the Seiberg-Witten theory should be equivalent: they
should give two different ways of realizing the same QFT. So the invari-
ants that Donaldson had written down and the similar invariants that
we can get by solving the Seiberg-Witten equations, are really equiv-
alent information, and what this means is that we have some kind of
Poisson summation formula to relate the two. This does not at all
say that the invariants on one side are equal to the invariants on the
other side. What it says is that the sum of all the Donaldson invariants
(they depend on an integer degree) is equal to the sum of the Seiberg–
Witten invariants (they also depend on an integer degree), or that the
two series give the same information. The equality (Poisson summation
formula) is in the sense of generating functions. Symbolically:

∑
SW

=
∑
D

.

It is a very deep kind of relationship, a non-linear ∞-dimensional ver-
sion of a Poisson summation formula—that’s why this formula was
mentioned at the beginning. It is a very important way of getting in-
teresting formulae in ordinary classical mathematics. But it also points
to much deeper things that link non-linear dualities in geometry and
in physics. This is very much part of modern day physics, for it was
physicists who discovered it, not mathematicians.

Of course, we might say that we ought to prove theorems, in this case
this prediction of the physicists. It is a very hard question and no

direct mathematical proof is known yet. Ideas for a proof could come
from the fact that the same geometric results are obtained by applying
Donaldson’s theory or Seiberg–Witten’s theory, so that in practical
terms they are equally useful. But mathematically, strictly speaking,
we don’t have a proof because we do not yet have a framework in which
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this new kind of duality involving infinite dimensional spaces has been
formally set up. We are still in the early stages of a theory which
will probably be developed in the future. In any case the question is
obviously very important.

Example: Mirror symmetry. Another example, also coming out
of physics, was equally spectacular. It was called mirror symmetry. It
does not have the name ‘duality’, but ‘symmetry’ here means essentially
the same thing. Mirror symmetry can be described in many different
ways. Here I will consider one of them.

In geometry there are different kind of geometries:

• Complex geometry. The coordinates are complex and the admis-
sible changes of variables are holomorphic. Examples: Riemann
surfaces and algebraic varieties over the complex numbers.

• Symplectic geometry. Real manifolds with a non degenerate
skew-symmetric 2-form. They generalize the phase space of
classical Hamiltonian mechanics. Algebraic varieties in complex
projective space are also symplectic, because the latter has a
natural symplectic structure (given by the Kähler metric) and
this structure induces a symplectic structure on subvarieties.

• Riemannian geometry. Real manifolds with a positive definite
metric.

These geometries may be thought as the non-linear versions of the three
classical (lie) groups:

• Complex general linear group, GL(n, C).
• Symplectic group, Sp(n) (preserves a skew-symmetric form).
• Orthogonal group, O(n) (preserves a metric).

Seen the other way around, each of these linear theories has a non-
linear generalization to a geometry, and this is how complex geometry,
symplectic geometry and Riemannian geometry arise.

What the physicists discovered is that there is a certain duality, or
symmetry, between the complex geometry and the symplectic geom-
etry. This duality relates in a rather precise way the information on
one side to the information on the other side. In particular, when this
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Complex Geometry Symplectic Geometry

DUALITY

Projective Algebraic Geometry

symmetry is applied to complex projective algebraic varieties we obtain

again complex projective algebraic varieties.

There are many concrete examples of this, which were first discovered
by physicists. In one class of examples, the algebraic varieties M and
M ′ have (complex) dimension 3 (so 6 real dimensions) and the duality
exchanges information on one side with information on the other (very
subtle information, as we will see below). Moreover,

dim Hev(M) = dim Hodd(M ′)

The dimensions of the homology are the same, but even homology on
one side corresponds to the odd homology on the other, which is very
hard to understand. It means, for example, that the Euler character-
istic (the dimension of the even part minus the dimension of the odd
part) changes sign when we go from one to the other. It is a very precise
relationship, but very mysterious. Moreover, the details of the geome-
try give the following: On the M side the information is about algebraic

curves, for example enumerative questions about rational curves of any
degree, and on the M ′ side it is related to periodic matrices.6

So this marvellous theorem tells us that easy information on one side
(periodic matrices, that can be calculated by classical means) is equiv-
alent to difficult information on the other side (algebraic curves, for
whose determinations there is very little information). In physics lan-
guage, the easy information is what is called classical and the difficult
one is what is called quantum. We are thus getting information of a
quantum character on one side out of a classical calculations on the
other side.

6 Period matrices started with Riemann and its entries are integrals of forms on
cyles.



DUALITY 83

Using this fantastic duality the physicists were able to calculate the
numbers of rational curves of any degree on very simple examples of
algebraic varieties of dimension 3. The formulae they got were so spec-
tacular to algebraic geometers that at first they did not believe them,
but eventually they were converted. Then they began a big industry
that has produced many books on mirror symmetry. It is a whole
new area in algebraic geometry that arises out of this particular simple
example, just one example of duality in quantum theory.

The applications of physics to mathematics have been numerous over
the years. Usually the mathematics is quite close to the physics, but
complex algebraic varieties seem as far away removed from physics as
one can imagine. Why should physics have anything to do with these
concepts in pure geometry?

[So its a spectacular coup: physicists go up into the sky, they land
by parachute in the middle of algebraic geometers and they capture
immediately the whole city.]

The discovery of mirror symmetry is certainly one of the most remark-
able developments of the last part of the 20th century. It provided
an example of two different classical theories, two different algebraic
varieties, giving rise to the same quantum theory, and with spectac-
ular applications. The mirror symmetry and Donaldson’s theory, two
of the most interesting developments in recent times, had their origin
in physics and in terms of the dualities we have been considering. We
see, therefore, that the payoffs of these dualities is very great.

It should be emphasized that the physics, even if it gives the exact an-
swers, does not necessarily give proofs. It gives answers we can believe
if we believe that the physics intuition is correct. But mathematicians
like to have a proof, and then they have to work very hard to prove the
theorems by other methods. Now lots of this has been done, and when
they have succeeded, essentially the physicists have been correct. This
is an interesting interaction: the physicists generate results that the
mathematicians can prove by other means and then they can exchange
information.
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Number Theory

The preceding two examples were from geometry. Now we will move
to number theory and to begin with we will consider a nice beautiful
simple example about prime numbers.

Let p be and odd prime. Then we can ask whether it can be represented
as the sum of two squares of two integers. The answer is that it can be
done if and only if p ≡ 1 mod 4. In other words, if p ≡ 3 mod 4, the
answer is no, and if p ≡ 1 mod 4, the answer is yes.

Writing p = x2 + y2 (x, y integers), which is equivalent to

p = (x + iy)(x − iy),

we see that we are factorizing a prime number, not in the rational
numbers, but in the field we get by adjoining i to the rational num-
bers.7 This is an example of algebraic extension of the field of rational
numbers.

This is the beginning of what is called class field theory, which is trying
to give information which relates algebraic extensions of a number field
to properties of primes in that field (in the example, information on
Q(i) relates to properties of primes in Q ). The theorem above is one
of the facts at the origin of class field theory, which essentially worked
for all abelian field extensions.

Abelian class field theory, a very fine theory finished in the 20th century,
was founded by Gauss, Kronecker and others, and gives a complete
answer to the story about abelian extensions of the rational numbers,
and also about abelian extensions of number fields. The important
thing that comes in is the Galois group of the extension. If the Galois
group is assumed to be abelian, the answer is that we can relate this to
constructions that can be performed inside the field concerning primes,
whereas the extensions are outside the field.

This was a great triumph of classical number theory and ended the
questions that Gauss and Hilbert posed of developing a theory in gen-
eral for all number fields (the original works were about quadratic
fields). But in the 20th century people became more ambitious and

7 If we do this with the integers, we obtain the Gaussian integers.
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asked about what could be done for non-abelian extensions. Would
there still be some kind of duality?

Taking into account the role of representations of groups in linear du-
ality, it is natural to ask whether this idea will also apply to number
theory. In other words, is there a way of using representations of non-
abelian groups to extend the classical class field theory?

The search for non-abelian class field theory has been going on for
over forty years and nowadays it goes under the name of the Lang-
lands programme, because Langlands was the person who put this in
a rather precise form—he made many conjectures and proved many
special cases.

Langlands programme. The Langlands programme is a large pro-
gramme which, if eventually completed, will give a very satisfactory
answer to the question of how to extend abelian class field theory to
the general case of non-abelian extensions. It is a very big programme,
that in many ways has just started, and in it a fundamental role is
played by complex linear representations of the Galois groups of alge-
braic extensions.

Simple geometric analogue. Let us consider a simple example or
analogue between number theory and ordinary geometry.

In ordinary geometry, or topology, if X is a space, for example the
circle S1, there are two things that we can do.

One is that we can look at the covering spaces that project down onto
it as the picture indicates.

Y

X
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For example, if we take X to be a circle, then Y can be the real line,
which covers the circle infinitely many times (that is why we take the
real numbers modulo 1). When we go to a covering space that cannot
go any further, that is called the universal covering space.

Consider the fundamental group of the space X, Γ = π1(X), It is
constructed inside the space, by geometry.8 Then the fact is that this
is related to the covering space situation: if we have the universal
covering space Y , then the fundamental group Γ acts freely on Y and
the quotient of Y by this group action is X. This is an example of
the sort of duality we are talking about, the fundamental group and
the universal covering being the ‘inside’ and ‘outside’ aspects of the
situation.

For example, given a representation of Γ into a matrix group (a ho-
momorphism Γ → GL(n, C)), then this gives rise over the space X to
what is called a vector bundle (the quotient of Y × Cn by the action
of Γ induced by the representation). This bundle is flat.9 In the case
where n = 1, we get a flat line bundle (a line bundle is a vector bundle
of dimension 1). Note that in this case GL(1, C) = C∗ is abelian.

If X is an algebraic curve or, in other words, a Riemann surface, then
it is well known that a Riemann surface is a close analogue of a number
field. Not the same thing, of course, but only an analogue. Points of
the Riemann surface are the analogues of prime numbers and the num-
ber field itself is the analogue of the rational functions (meromorphic
functions) on the curve (Riemann surface).

Rational (meromorphic) functions on X ↔ Number field

The analogy is stressed by the fact that many theorems just look the
same on both sides. Even more, people can guess what a theorem

8 This group is obtained by taken closed paths in X and identifying two paths if
they are deformable one into the other.

9 Any closed loop yields a linear endomorphism of the vector bundle, which only
depends on the homotopy class of the loop. The bundle is said to be flat because
loops that can be deformed to a point produce the identity endomorphism. If we
had a non-trivial endomorphisms even for loops in small regions of X , then the
bundle is said to have ‘curvature’. Flat vector bundles are vector bundles with
trivial curvature. For flat bundles, therefore, the only interesting endomorphisms
come from going around big paths.
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should be on the number field side by using the corresponding piece of
geometry and making the translation of languages.10 There is a whole
dictionary. For example, the fundamental group of the Riemann sur-
face corresponds to the Galois group of the number field and coverings
correspond to field extensions.

We also remark that there is some analogy between these pictures and
what we have been saying about class field theory. On both sides we
have the abelian case and the non-abelian case, depending to which we
want to take.

Geometric Langlands programme

The Langlands programme has, along these lines, something called the
geometric Langlands programme, which replaces the number fields by
Riemann surfaces. It is a very interesting theory which is much easier
than the number field case, but not trivial and still quite big. It is
developed by using the theory of vector bundles on Riemann surfaces.
This theory has been going on for quite a long time, has nice results
and in it there are geometrical analogues of the Langlands conjectures.
There is also the intermediate case of the Langlands program on al-
gebraic curves over finite fields from which we can transfer either to
Riemann surfaces or to a number fields.

Very recently, in the last two years, Witten and his collaborators (mainly
Kapustin and Gukov, two young Russians) have managed to deduce
what is required for the geometric Langlands program from non-abelian
dualities in physics. The kind of dualities they use are close to the dual-
ities in Donaldson’s theory and to the dualities in the mirror symmetry,
and are based (at least) on the electric-magnetic duality.

The original dualities in physics are those between electricity and mag-
netism. They are very well understood and known, but it is a linear
theory. When people started to play with non-linear theories, and
tried to look for something analogous to duality, they had vague ideas
that perhaps is would be possible to have some generalization of the
electric-magnetic duality to the non-abelian case.

10 The Weil conjectures are of this kind.
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In the dualities it often happens that there is a pair of corresponding
parameters, one on each side, that are inverse.11 That means that if
the parameter is large on one side, then it is small on the other side.
In physics there are many theories that have a parameter called the
coupling constant. If this parameter is small, then we can expand in
a power series, and one gets a good approximation of the theory (this
approach is called perturbation theory). If the parameter is large, this
is hopeless. But if the theory can somehow be related to a dual theory
with a small coupling constant, then of course we are in good business.
We expand on the other side, then translate backwards and we get
information about the theory with a large coupling constant, which is
very difficult to get by other means. This was the dream that physicists
had.

Could it be that the strong force, with a large coupling constant, and
the weak force, with a weak coupling constant, are in some sense dual?
There was lot of speculation along these lines and eventually, for ex-
ample, the theories that Seiberg and Witten produced were of that
kind.

Now the question of what Witten and his collaborators showed is that
the geometric Langlands program for a Riemann surface can be recon-
structed from one of the non-abelian dualities that involve basically
electric-magnetic duality. They take a duality in 4 dimensions, where
electricity and magnetism are given by a 2-form on each side, then they
develop a non-abelian theory which is applied in the special case where
the 4 dimensions is the product of the (curved) Riemann surface by 2
flat dimensions. In this situation they reconstruct interesting results
about the Riemann surface and out of it they get the geometric Lang-
lands program. Mirror symmetry of particular algebraic varieties plays
a key role in this programme. The particular algebraic varieties they
use are (Hitchin) moduli spaces of certain kinds of bundles on curves
(bundles with some extra information called a Higgs field).

Altogether it is a great tour de force (see [K-W, G-W, F-W]) and one
of the most exciting things happening in the last few years. It is a
non trivial, very deep operation, and it is quite spectacular that the

11 This phenomenon appear in ordinary Fourier theory, where the Fourier trans-

form of the Gaussian e−a2

is the Gaussian e−1/a2

.
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electric-magnetic duality should be behind the duality which is used in
this Langlands programme, itself born out of number theory.

I must admit that many years ago, when I knew just a little bit of
these ingredients, I made some speculations that perhaps the Langlands
programme could be understood in terms of duality of electricity and
magnetism. It was a good guess: 20 years later we are there.12

Modular forms

To finish with, let us go back to modular forms (at the beginning we
mentioned the modular form of the Θ function, which corresponds to
SL(2, Z)). Modular forms arise all over the place in mathematics, and
in physics, and basically they are objects which transform nicely under
certain arithmetic groups (there are large numbers of these groups;
they are like groups of integer matrices).

Modular forms are the things which number theorists really play with.
Much of the Langlands programme is a reinterpretation of questions
about modular forms, which are a very key part of that theory. The
framework of representations and so on that Langlands developed is a
framework in order to handle modular forms. Results about modular
forms have immediate applications and so they are really at the heart
of the matter.

Interestingly enough, modular forms also frequently turn up in quan-
tum field theories, usually in the form of what is called a partition

12 Editorial note. “For a gauge group G, the GNO dual group is actually the
same as the Langlands dual group LG, which plays an important role in formulating
the Langlands conjectures. [...] This was observed by Atiyah, who suggested to the
second author [Witten] at the end of 1977 that the Langlands program is related
to quantum field theory and recommended the two papers [10,12].” (Quoted from
[K-W], p. 3). The two papers cited in this quote are: [10] P. Goddard, J. Nuyts, and
D. I. Olive, Gauge Theories And Magnetic Charge, Nucl. Phys. B125 (1977) 1-28;
and [12] C. Montonen and D. I. Olive, Magnetic Monopoles As Gauge Particles?,
Phys. Lett. B72 (1977) 117-120.
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function.13 There are many examples of modular forms in the litera-
ture, but the reason why they exist, where they come from, is often
not at all clear.

One of the big unsolved problems will be to understand the connection
between number theory and physics which involves modular forms.
That will be related to what I have been talking about, maybe much
beyond that, and might need new ideas, but it is very concrete: we see
modular forms created on both sides, one asks why, and the answer is
that we don’t know. But the evidence is there, it is very spectacular,
and large parts of mathematics have been swept up by this kind of
band-wagon of duality.

Duality is an old topic, but it is still very much alive and kicking. We
have seen how it relates to many things that everyone is familiar with in
mathematics (group theory, topology, analysis, Fourier theory), and so
it is not surprising that it also arises in physics, where one can use the
same sort of ideas. It is a very exciting story that hopefully the younger
people here will continue by proving some theorems on modular forms
for the future.
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