
HILBERT REVISITED

DAVID BUCHSBAUM

1. Introductory comments

The seeds of a good deal of the material I'll talk about today may be
found in the beautiful 1890 article by Hilbert: On the theory of alge-
braic forms (Über die Theorie der algebraische Formen), [13]. When
I was a graduate student, people spoke of that paper as the one that
killed o� invariant theory. I hope the irony of this perception will
become evident as we proceed with this talk.
It was in that paper that the famous Basis Theorem and Syzygy Theo-
rem were proved; the �rst, a fundamental result for the development of
commutative algebra as we know it; in fact, the basis of one of the def-
initions of �Noetherian,� and the second, the nineteenth century form
of the statement that the global dimension of the polynomial ring in n
variables is n.
Hilbert was concerned with fundamental problems of invariant theory:
given a linear group, G, acting linearly on the ring of polynomials,
S = K[X1, . . . , XN ], we let SG be the subring of invariants. Is SG

�nitely generated as an algebra over the �eld, K, and if so, what are
its generators? Assuming it is �nitely generated, that is, that SG =
K[Y1, . . . , YN ′ ]/I, is it the case that I is �nitely generated as an ideal in
K[Y1, . . . , YN ′ ]? (The ideal, I, is called the ideal of relations on the
invariants.) To answer the latter question, Hilbert proved his famous
Basis Theorem, undeniably one of the cornerstones of commutative
algebra.
Because G acts linearly on the variables of S, it's clear that the ring
SG is graded and that the graded piece of degree ν, (SG)ν , is a �nite-
dimensional vector space over the �eld, K. A question of prime concern
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was to determine the dimension of this space for all ν, that is, to eval-
uate the function χ(ν) = dimK((SG)ν) for all ν (what we today call
the Hilbert function), and to determine its growth. What Hilbert saw
was that this could be done if one could write down a �nite free res-
olution of SG over the polynomial ring, K[Y1, . . . , YN ′ ] (this gives an
explicit computation of the dimension, and also shows that the func-
tion is polynomial; we'll see an example of this in the next section). He
then proceeded to prove the Syzygy Theorem, clearly a fundamental
result in homological algebra.1

So, starting with a basic problem in invariant theory, Hilbert was led
to prove two of the building blocks of commutative and homological
algebra. If, indeed, he did �kill� invariant theory, he certainly atoned
for it with a wealth of reparations. But we'll get back to representation
theory again later.

2. An example

To illustrate the ideas mentioned above, let us consider the variables
{Uij, Vjk} over a �eld, K, with i = 1, 2, 3; j = 1, 2; k = 1, 2, and the
polynomial ring, S = K[Uij, Vjk]. The general linear group of 2 × 2
non-singular matrices, G = GL2(K), operates on S in the following
way: A matrix, A, operates on S by multiplying the matrix (Uij) on
the right by A−1, and by multiplying the matrix (Vjk) on the left by A.
It's fairly easy to show that the ring of invariants, SG, is generated by
all six elements of the form Zik =

∑
j=1,2 UijVjk; the ideal of relations

on the invariants is, by the Hilbert Basis Theorem, �nitely generated,
and it is again not di�cult to prove that the 2×2 minors of the matrix
(Zjk) generate this ideal, which we will call I2. Thus, our ring SG is
the graded ring, K[{Zik}]/I2.
Suppose, now, that we want to calculate the Hilbert function of SG.
Let xi = Zi1 and yi = Zi2, for i = 1, 2, 3. Our ideal is generated by the

1The Syzygy Theorem did more than provide a way to evaluate the function,
χ(ν); it actually showed that for large values of ν, the function is a polynomial
function, that is, it agrees with a polynomial for su�ciently large ν.
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minors of order two of the matrix:

∆ =




x1 y1

x2 y2

x3 y′3


 ,

and we set R to be the graded polynomial ring, K[x, y]. We get the
exact sequence (the exact sequence associated to the syzygies of the
R-module, R/I2):

0 → R2 β→ R3 α→ R → R/I2 → 0

with β : R2 → R3 the map whose 2× 3 matrix is
(

x1 −x2 x3

y1 −y2 y3

)
and

α : R3 → R the map whose 3 × 1 matrix is




∆1

∆2

∆3


, where ∆i is the

2× 2 minor obtained from ∆ by eliminating the ith row.
It's now easy to compute the νth degree of our factor ring as(

6 + ν − 1

ν

)
− 3

(
6 + ν − 3

ν − 2

)
+ 2

(
6 + ν − 4

ν − 3

)
=

3

(
ν

3

)
+ 7

(
ν

2

)
+ 5

(
ν

1

)
+ 1.

This is clearly a polynomial function of degree three.

3. Homology and commutative ring theory

Here we'll elaborate a bit on the notions of homological dimension,
global dimension, and other ways that homology ties in with algebra.
One very simple illustration of the relationship between homology and
algebra is the following. Suppose R is a commutative ring, and x an
element of R. One is immediately led (if one is so inclined) to consider
the complex:

0 → R
x→ R → 0.

Its zero-dimensional homology is the module, R/(x), and its one-dim-
ensional homology is the ideal, (0) : x = {y ∈ R/xy = 0}. Thus, the
vanishing of the �rst tells us that the element, x, is a unit, and the
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vanishing of the second tells us that x is not a zero-divisor in R. If we
replaced R by the R-module, M , and considered the complex

0 → M
x→ M → 0,

the vanishing of the zero-dimensional homology would tell us that every
element of M is divisible by x, and the vanishing of the one-dimensional
homology would say that x is a regular element for M , that is, that
there is no non-zero element of M that is annihilated by x. We can
extend the notion of regular element to the notion of regular sequence
of elements for a module, M : the sequence, {x1, . . . , xn}, of elements
of R is said to be regular for M , if for each i = 0, . . . , n − 1, the
element xi+1 is regular for M/(x1, . . . , xi)M . When i = 0, this just
means that x1 is regular for M . One also adds the condition that
(x1, . . . , xn)M 6= M .
Now, if we have a complex, C, of R-modules, and an element x ∈ R,
multiplication by the element x on C yields a map of the complex into
itself. The mapping cone of this map of complexes is another com-
plex which we can denote by C(x).2 Given a sequence of elements,
{x1, . . . , xn}, we can iterate this procedure3 and obtain the complex,
C(x1, . . . , xn). In particular, given a module, M , and the sequence of
elements {x1, . . . , xn}, we can form the complex, M(x1, . . . , xn); this
is known as the Koszul complex over M associated to the se-
quence, {x1, . . . , xn}.
A very nice relationship between this homological construction and the
notion of regular sequence is the following:
If R is a local ring, M an R-module, and {x1, . . . , xn} a sequence of
elements in the maximal ideal of R such that M/(x1, . . . , xn)M 6= 0,
then {x1, . . . , xn} is a regular M-sequence if and only if

H1(M(x1, . . . , xn)) = 0.4

2If A and B are complexes, and f : A → B is a map (of degree 0), the mapping
cone of f is the complex, Y de�ned by: Yn = An−1

⊕
Bn, and with the boundary

map, df : Y → Y given by df (a, b) = (dA(a), dB(b) + (−1)n−1f(a)).
3Here we are using the fact that R is commutative; if R weren't commutative,

we could still iterate this procedure if we assumed that the elements xi commuted
among themselves.

4The vanishing of H1 is equivalent to the vanishing of Hi for all i > 0 in the case
of a local ring.
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For simplicity, we'll assume from now on that our rings, R, are all local
rings.
Regular sequences have played a pretty important role in local ring
theory. In fact, they are fundamental in de�ning a sort of arithmetic
notion of �size� of an ideal and of a local ring.
In noetherian ring theory, if we are given an ideal, I, we use the rank
or height of I as a measure of its �size� (really tied up with a geometric
notion of dimension). If we're given a ring, R, we use its Krull di-
mension as a measure of its �size.� I say they are a geometric type of
measure since they are connected with the lengths of nested sequences
of varieties. We say that the depth of an ideal, I, is the length of
the longest R-regular sequence contained in I, and the codimension
of a local ring is the depth of its maximal ideal. Since the regularity
of a sequence is a more or less arithmetic idea, I think of depth and
codimension as an �arithmetic measure� of size. In a Cohen-Macaulay
ring, these two measures coincide; for that reason, the application of
algebraic techniques to Cohen-Macaulay varieties is so e�ective.
For a local ring, then, we have two integers connected with its size: its
codimension, and its dimension (or Krull dimension). There is also an-
other well-known integer associated with a local ring: its embedding
dimension, written edim(R). This number is the smallest number of
elements required to generate the maximal ideal of the ring.
The Krull Principal Ideal Theorem tells us that the embedding dimen-
sion of a local ring is always greater than or equal to its dimension, and
it's easy to show that the dimension of a local ring is always greater
than or equal to its codimension. The classical de�nition of a regular
local ring is that a local ring is regular if its embedding dimension is
equal to its dimension. A classical question about regular local rings,
unanswered until the advent of homological tools, was the following: If
R is a regular local ring, and p a prime ideal of R, is the localization,
Rp, again regular?
To see how the introduction of homological tools helped to solve this
problem, we de�ne a few more constants associated with a local ring.
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The �rst is projective dimension of a module (and this idea goes
straight back to the Hilbert paper, [13]). If

P : · · · → Pn → Pn−1 → · · · → P1 → P0 → 0

is a complex of projective modules (P is projective if it is the direct
summand of a free module), we say it is a projective resolution
of the module, M , if H0(P) = M and Hi(P) = 0 for all i > 0.
Every module has a projective resolution and, since over a local ring,
all projective modules are free, the notions of a free resolution (the only
ones considered by Hilbert) and a projective one, coincide.
We say that such a resolution is �nite if there is an integer, m, such
that Pi = 0 for all i > m, and we de�ne the length of such a resolution
to be the smallest such integer m. We say that a module, M , has �nite
projective dimension if it has a �nite projective resolution, and in that
case we de�ne its projective dimension, pdR(M), to be the smallest
of the lengths of its projective resolutions. If a module has no �nite
resolution, we say its projective dimension is in�nite.
If R is a local ring, we de�ne the global dimension of R, denoted by
gldim(R), to be supMpdR(M), where M runs over all R-modules. We
de�ne the �nitistic global dimension of R, denoted by fgldim(R), to
be supNpdR(N), where N runs over all R-modules such that pdR(N) <
∞.
It was known almost from the inception of homological algebra that
if R is a regular local ring, then fgldim(R) is �nite (and equal to its
dimension). This is pretty much the Hilbert Syzygy Theorem for local
rings. If it could be shown that �nite global dimension characterized
regular local rings, then the problem of the localization by a prime
ideal would have an a�rmative answer. For it's known that the global
dimension of the localization of a ring, R, is always less than or equal
to that of R. Therefore, it was pretty evident that this homological
characterization of regularity would be quite useful.
Much of the foregoing discussion, as well as the proof of the following
result, can be found in [4].
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Theorem
If R is a local ring, the following inequalities always hold:

fgldim(R) = codim(R) ≤ dim(R) ≤ edim(R) ≤ gldim(R).

An immediate corollary of this is the following:

Corollary
A local ring, R, is regular if and only if gldim(R) is �nite.

Another classical problem that de�ed solution without the use of ho-
mological tools was to show that every regular local ring is factorial.
One clue that factoriality and homology are related is that, for a com-
mutative ring, R, factoriality is equivalent to pdRR/(x, y) ≤ 2 for every
pair of elements, x, y, in R. The proof that every regular local ring is
factorial is a bit long for this talk, but it can be found in [4].

4. Further ramblings in local ring theory

We spoke earlier about the Hilbert function, or Hilbert polynomial, but
didn't relate it to local ring theory directly. In 1947, Pierre Samuel [14]
used a generalization of the Hilbert function to de�ne the dimension
of a local ring, as well as its multiplicity. The scheme was this: we
let R, as usual, be a local ring with maximal ideal, m. Then for every
integer ν, the module R/mν has �nite length as an R-module, and we
de�ne χ(ν) = length(R/mν). The degree, d, of this polynomial is the
dimension of R, and the leading coe�cient of this polynomial divided
by d! is the multiplicity of R. This, and the study of intersection
multiplicities, made the Hilbert polynomial a basic tool in algebraic
geometry and ring theory.
Samuel used this approach to de�ne a more general theory of intersec-
tion multiplicity than existed at that time, and in around 1957 Serre
proposed a de�nition that involved the functors Tor (this, too, is dis-
cussed in more detail in [4]). While Serre's de�nition was shown to be
�right� for unrami�ed regular local rings, there were many questions
left standing for the rami�ed case. Here, A. Grothendieck stepped in
with a suggestion. Since every rami�ed regular local ring, R, is of the



158 DAVID BUCHSBAUM

form S/(x), where S is an unrami�ed regular local ring and x an ele-
ment of S, he pointed out that the di�culties in the rami�ed case could
be resolved if one could solve the �Lifting Problem.� This problem can
be stated this way.
Let S be a local ring, x an element of S which is regular in S, R =
S/(x), and let M be an R-module. Is there an S-module, M̄ , such
that i) M̄/xM̄ ∼= M and ii) x is regular for M̄? Clearly item ii) is the
di�cult one to satisfy, since we could always take M̄ to be M itself, if
not for that condition.
A fairly straightforward way to proceed might be this. We let

F : · · · → Fk → Fk−1 → · · · → F1 → F0

be a free resolution of M over R.
By choosing bases for the free modules of the resolution, the maps may
be described by matrices. Now let

F̄ : · · · → F̄k → F̄k−1 → · · · → F̄1 → F̄0

be a �lifting� of the complex F. This means that the barred modules
are free of the same rank as the corresponding non-barred free modules,
and the maps are matrices whose entries in S are representatives of the
entries in the corresponding matrices over R. (That is, if aij ∈ R is a
matrix entry, we let āij ∈ S be an element which, modulo (x), is equal
to aij.) In short, F̄/xF̄ = F.
Since x is regular in S, we have the short exact sequence:

0 → F̄
x→ F̄ → F → 0,

which, if it were a sequence of complexes, would imply that the barred
complex is acyclic, and its 0-dimensional homology would be a lifting
of M .
But the problem is how to lift the matrices in F in such a way that the
sequence of modules and maps forming F̄ is a complex.
In the case of a module, M , of projective dimension 0 or 1, this is clearly
not a problem. The �rst case that must be seriously considered, then,
is that of pdR(M) = 2.
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To make a long story short, it is possible to show in this low-dimensional
case that a lifting is possible,5 but a number of counterexamples have
been produced to show that in this generality, lifting is not always
possible in higher dimensions. However, it is important to note that the
essential step used in lifting the two-dimensional module was to start
with the matrix at the �tail� of the resolution (hence very heavy reliance
on the �nite-dimensionality of the module, M), and to transport the
information it carried, forward to the other terms of the resolution. In
fact, this kind of analysis of a �nite free resolution led Eisenbud and
me to work on the structure of �nite free resolutions in general (see [6],
[7] and [8]).
The study of matrices and determinantal ideals was essential in the
work on the Lifting Problem, but questions about determinantal ideals
had been percolating for a long time before that. Because of the success
of the application of the Koszul complex to so many of the classical alge-
braic problems: characterization of regularity; multiplicity and depth;
characterization of Cohen-Macaulay rings, and because of the existence
of the generalized Cohen-Macaulay Theorem, it seemed natural to try
to �nd a generalization of that complex that would be associated to
the presentation of a (�nitely presented) module, rather than just to a
cyclic one (which is what the Koszul complex does). This little prob-
lem took more e�ort and time than one would have originally thought
it should, but the project ended up with joint work with D. S. Rim,
namely [5] and [11]. A little before the work with Rim appeared, there
was a paper by Eagon and Northcott [12], which associated a complex
to the ideal generated by the maximal minors of a matrix. The family
of complexes in [5] and [11] included one of the Eagon-Northcott type
(it was much �fatter�), but also included a whole family all related to
each other via the ideal of maximal minors of the presentation matrix
of a module. These new complexes did yield a proof of the generalized
Cohen-Macaulay Theorem, as well as a generalized multiplicity, which

5This was �rst done using a theorem I had proven about determinantal ideals,
which I later learned had also been proven independently by a number of other
mathematicians for a number of di�erent reasons. The �rst person in this list was
a mathematician named L. Burch. However Kaplansky discovered that a form of
this theorem had originally been proven by Hilbert, so the theorem is now known
as the Hilbert-Burch Theorem.
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was left in the dust for many years, but then resuscitated in the work
of Kirby, Rees and Tierney, and expanded by Kleiman and Thorup.
References to this work, and some discussion of this material, can be
found in [4].
After the work with Eisenbud on �nite free resolutions, we turned our
attention brie�y to these generalized Koszul complexes, and tried to
�slim them down� so that we could recover the Eagon-Northcott com-
plex in some systematic way. This project culminated in the paper [9].
The �slimming-down� process that was used led into the realm of Weyl
modules, and thus into representations of the general linear group. The
work was fairly technical, but because it was this development that led
us back to representation theory and Hilbert, it may be worth taking
a detour into some more personal anecdotes. First, let me clear up a
matter of notation: why do many authors use the letter K to stand
for Weyl modules instead of, say, W? After all, the Schur modules
had classically been denoted by the letter S. Furthermore, the same
authors who use the letter K for Weyl modules tend to use the letter
L for Schur modules. How come?
This state of a�airs was brought about by a combination of serendipity
and ignorance. It was clear that the slimming down process we were
looking for depended upon looking at the kernels of some maps whose
domains were the terms in our fat complexes. As I never was much
of a cherisher of notation (or terminology, for that matter), I simply
denoted these kernels by K (what else?), with suitable indexing to
indicate what these were the kernels of.
The ignorance factor resides in the fact that at the time, neither Eisen-
bud nor I had any serious knowledge of Weyl and Schur modules, so
that we didn't recognize these Ks for the Weyl modules they were.
However, their duals eventually became equally important to us, so
the natural thing to do was to call them Ls. These Ls are what the
world knows as the Schur modules of classical representation theory.
In any event, serendipity and ignorance have often been behind what
can turn out to be interesting material, as is the case here.
One surprising thing is that, although the paper [9] was written in 1975,
no one thought to rigourously compare the old fat complexes with the
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new slim ones. It wasn't until Bo� and I were writing the book, [4],
that we realized there was this gap, so we wrote [3] to �ll it. It turns
out that these two classes are homotopically equivalent, as we may all
have expected.6 It also became apparent from the proof why it was that
so much time had elapsed between the establishment of these classes
and the proof that they were essentially the same: the proofs involve
fairly heavy use of representation theory and combinatorics, topics that
neither Eisenbud nor I had much command of in those earlier years.

5. Determinantal ideals

During the search for a generalized Koszul complex, it became clear
that it would be useful to have not only a complex that was associated
to the maximal minors of a matrix, but also complexes associated to
the minors of arbitrary order of a matrix. A good deal of time was
spent on this problem, but little headway was made. However, after
the work on [9], Eisenbud went o� to Paris for the year. There, through
Verdier, he met A. Lascoux, who asked him if he could suggest some
application of his combinatoric and representation-theoretic results to
something in commutative algebra. Eisenbud mentioned to him that
certain representation modules apparently found their way into resolu-
tions that we had been considering, so he suggested that this might also
be the case with resolutions of determinantal ideals of any size. I should
mention that as early as 1966, A. Andreotti and I had concluded that,
�philosophically,� the terms of such a resolution should be representa-
tion modules of Gl(F )×Gl(G), if the matrix represented a map from
F to G, but we just couldn't see how to convert that philosophy into
reality. Well, ten years later, at the suggestion of Eisenbud, Lascoux
found the way to do just that. The methods Lascoux used were very
much those of characteristic zero, so that, while his resolutions could be
of real interest to geometers (especially di�erential geometers), there
was still the nagging question of how to make this approach universal.

6As far as I know, no one has gone back to the paper, [11], to see if the de�nition
and properties of the generalized multiplicity are easier to handle with this new
class of thin complexes.
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Over the next few years, two of my students, K. Akin and J. Weyman,
and I, found a convenient generalization of the classical representa-
tion theory to the characteristic-free case. I say �convenient� because
it had to be a theory with a su�ciently large class of modules to al-
low the introduction of homological technique (such as �ltrations and
exact sequences) that could replace the combinatorics and counting
methods that are so powerful in characteristic zero. This meant that
our class of shapes had to consist of far more than partitions, or even
skew-partitions. In fact, a new class of shapes came into play (al-
most skew-shapes), and that set into motion a whole new interaction
of homological methods with classical algebra, in particular with rep-
resentation theory. And so we've completed a circle, and returned to
the area that Hilbert purportedly �killed o�.�

6. Stepping further into representation theory

In fact, no sooner had Akin, Weyman and I de�ned these characteristic-
free analogues of Weyl and Schur modules than we saw some lovely
problems arise in connection with Z-forms. What happened was that
with the new de�nitions, it �rst of all became clear that the terms
and maps of the Lascoux resolutions would not work as resolutions of
generic determinantal ideals; a simple aping of these terms produced
torsion homology, rather than trivial homology. Part of the problem,
which we understood with some degree of insight, was that there are
di�erent Z-forms of the same rational representation. For example,
over the rationals, Q, there is the representation Sn, the n-th sym-
metric power. However, over the integers, one has both Sn and the
inequivalent n-th divided power, Dn. When you tensor over the ratio-
nals, the two become equivalent; hence the representation, Dn, is called
a Z-form of Sn.
In the case of the resolution of the ideal of submaximal minors, [2],
Akin, Weyman and I found that certain Z-forms of the hook represen-
tations obtruded, and we had to �nd ways to handle these so that we
would rid the complex we were constructing of torsion homology.
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What we had to do was prove and use the rather strange fact that the
complex

(1) 0 → Λk → D1 ⊗ Λk−1 → · · · → Dl ⊗ Λk−l → · · · → Dk → 0,

in which the maps entail diagonalizing the exterior power and multi-
plying in the divided power, is exact from Λk up to l = [k

2
]; that is,

exact till halfway up. Thus, the kernels (or images) in those dimensions
are universal Z-free representations of Gln which, when tensored with
the rationals, Q, are isomorphic to the Schur modules of the hooks in
the corresponding dimensions (since the Schur hooks are the kernels of
the corresponding complex where the divided power, D, is replaced by
the symmetric power, S). This is a less trivial example of what we're
calling Z-forms of the same rational representation of Gln.
To illustrate how to construct non-isomorphic Z-forms and their rela-
tion to resolutions of Weyl modules, consider the following.
We have the short exact sequence

0 → Dk+2 → Dk+1 ⊗D1 → K(k+1,1) → 0

where K(k+1,1) is the Weyl module associated to the hook partition
(k + 1, 1). If we take an integer, t, and multiply Dk+2 by t, we get an
induced exact sequence and a commutative diagram:

0 → Dk+2 → Dk+1 ⊗D1 → K(k+1,1) → 0
↓ t ↓ ↓

0 → Dk+2 → E(t; k + 1, 1) → K(k+1,1) → 0,

where E(t; k + 1, 1) stands for the co�ber product of Dk+2 and Dk+1⊗
D1. Each of these modules is a Z-form of Dk+1 ⊗ D1, but for t1 and
t2, two such are isomorphic if and only if t1 ≡ t2 mod k + 2 (see[1]). In
fact, one can easily show that Ext1

A(K(k+1,1), Dk+2) = Z/(k +2), where
A stands for the Schur algebra of appropriate degree (namely, k + 2).
We now see how such forms are related to resolutions of Weyl modules.
Consider the partition (k, 2), the associated Weyl module, K(k,2), and
its resolution (over the integers):

0 → Dk+2 → {Dk+2 ⊕Dk+1 ⊗D1} → Dk ⊗D2 → K(k,2) → 0.
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The map of Dk+2 into the indicated direct sum is the usual diagonal-
ization into the second summand (or the place polarization ∂21),7 but
is multiplication by 2 into the �rst. The map from Dk+2 to Dk ⊗ D2

is the second divided power of ∂21 or ∂
(2)
21 . As a result, we see that the

cokernel of this map is what we called above, E(2; k+1, 1). This shows
how these Z-forms show up in resolutions of Weyl modules.
Now the problem of resolving Weyl modules at �rst seemed to be easy;
at least it was in the case of two-rowed shapes, where our approach
required a proof of exactness of a certain fundamental sequence, but did
not compel us to introduce a class of shapes beyond the skew-shapes.
However, once we left the two-rowed situation, everything seemed to hit
the fan: the short exact sequence we had used to such advantage before
required us to introduce what are now called almost skew-shapes; the
combinatorics of overlapping rows was far more complicated; the proof
of the exactness of our sequences seemed to require an ungainly spectral
sequence (where the terms of the n-th �ltration, Fn, were described in
terms of the dyadic expansion of n). By the end of the summer of 1982,
I had calculated the resolution of the skew-shape with two three-fold
overlaps, and realized that the tools at our command were insu�cient
to proceed intelligently with this project. Akin and I put this problem
aside, and turned, instead, to the study of intertwining numbers (a
topic we will not discuss here, but can be found in [1], [10] and [4]).
These numbers arise in modular representation theory.
In 1990, Rota and I decided to get together to study this resolution
problem and, after a few months of getting to understand each other's
language, Rota introduced me to letter-place techniques and, in par-
ticular, place polarizations. A rather complete description of these no-
tions, and the combinatorical proofs of the fact that these letter-place
algebras have a basis consisting of double standard double tableaux
�lled by �letters� and �places,� can be found in the later chapters of [4];
here I will just illustrate with an example or two. In any event, using
these notions, a good deal of the incomprehensible morass of the 1982
calculations was cleared away, and much progress could again be made
on the problem of resolving Weyl modules. �Much progress� doesn't
mean that the problem is solved; it's still open. But at least we have

7We'll discuss these place polarizations later in this section.



HILBERT REVISITED 165

a description of all the terms that appear in these resolutions, for all
almost skew-shapes of any number of rows ([4]).

Let's look now at some letter-place ideas and place polarizations.
An element w⊗w′ ∈ Dp⊗Dq would be written, in letter-place algebra,
as (w|1(p))(w′|2(q)) to indicate that it is the tensor product of a basis
element of degree p in the �rst factor, and one of degree q in the second.
This is then collected in double tableau form as

(
w
w′

∣∣∣∣
1(p)

2(q)

)
.

If we further agree that the symbol (v|1(p)2(q)) means
∑

v(p)⊗ v(q) ∈
Dp⊗Dq, where v is an element of degree p + q and the sum represents
the diagonalization of v in Dp ⊗ Dq, then we can also talk about the
double tableau (

w
w′

∣∣∣∣
1(p)2(k)

2(q−k)

)
,

which means
∑

w(p) ⊗ w(k)w′. Ordering the basis elements of the
underlying free module, we can now talk about `standard' and `double
standard' double tableaux. A major result on letter-place algebra is
that the set of double standard double tableaux form a basis for Dp⊗Dq

([4]).
In general, one could talk about Dp1 ⊗Dp2 ⊗ · · · ⊗Dpn in letter-place
terms, where the �places� run from 1 to n.

To illustrate the basis theorem: suppose p < q, and we have the element
a(p) ⊗b(q) ∈ Dp⊗Dq . Then, although

(
a(p)

b(q)

∣∣∣∣
1(p)

2(q)

)
is a basis element

of Dp ⊗ Dq, it isn't a double standard tableau (even assuming a < b
and 1 < 2) since p < q.

To write
(

a(p)

b(q)

∣∣∣∣
1(p)

2(q)

)
as a linear combination of standard tableaux,

we clearly must have
(

a(p)

b(q)

∣∣∣∣
1(p)

2(q)

)
=

p∑

l=0

cl

(
a(p)b(q−p+l)

b(p−l)

∣∣∣∣
1(p)2(q−p+l)

2(p−l)

)
,
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and we want to determine the coe�cients cl. Rewriting the above, we
get

a(p) ⊗ b(q) =

p∑

l=0

cl

p∑

k=0

(
q − k

p− l

)
a(p−k)b(k) ⊗ a(k)b(q−k);

we want the cl to be such
p∑

l=0

cl

(
q − k

p− l

)
=

{
1 for k = 0
0 otherwise .

Clearly, if we set cl =
(

p−q
l

)
, then for k = 0, the sum above is

p∑

l=0

(
p− q

l

)(
q

p− l

)
=

(
p

p

)
= 1,

while for k > 0, we get
p∑

l=0

(
p− q

l

)(
q − k

p− l

)
=

(
p− k

p

)
= 0

as we wanted.

To illustrate a place polarization, let's look at the map
¤ : Dp+k ⊗Dq−k → Dp ⊗Dq

given by the composition
Dp+k ⊗Dq−k → Dp ⊗Dk ⊗Dq−k → Dp ⊗Dq,

where the �rst map is diagonalization, and the second is multiplication.
From a letter-place perspective, let's write an element of Dp+k⊗Dq−k as(

w
w′

∣∣∣∣
1(p+k)

2(q−k)

)
, and let's �polarize� the place, 1, to 2, k times, that is

let's send 1(p+k) to 1(p)2(k). Then our element
(

w
w′

∣∣∣∣
1(p+k)

2(q−k)

)
goes to

(
w
w′

∣∣∣∣
1(p)2(k)

2(q−k)

)
. If we write out what this means in terms of tensor

products of divided powers, we see that this last element is precisely
the element in Dp ⊗ Dq that is the image of the map, ¤, applied to
w ⊗ w′.
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Recognizing that the maps Akin and I had been working with were
these polarizations, and then proving some Capelli-like identities for
these maps, we were able to express all the inexplicable identities of the
1982 work in a coherent way, and thus able to proceed to consideration
of the general case.
While all of this may seem terribly ad hoc, these operations can all be
described in the conventional terms that algebraists are accustomed to.
Again I refer the reader to [4] for the details.

7. Weyl-Schur complexes

The above discussion dealt only with the letter-place aspect of tensor
products of divided powers; in this case, the letters and places are all
considered to be positive. One may deal with letters and places of
negative sign, as well as of mixed sign, and corresponding place polar-
izations. When one takes this to the extreme (that is, letter and place
�alphabets� of mixed signs), one can generalize these Weyl modules to
complexes, called Weyl-Schur complexes. When we do this (see [4]), we
�nd that the fundamental exact sequences that I mentioned earlier, can
be proven exact without recourse to any spectral sequence argument.
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