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A Mission to Ly

Calculation of the valid regions in the R3BP to send a
satellite that goes directly through the equilibrium
point L, of the Earth-Moon system.
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“The scientist does not study nature because it is
useful to do so. He studies it because he takes plea-
sure in it, and he takes pleasure in it because it is
beautiful. If nature were not beautiful it would not
be worth knowing, and life would not be worth liv-
img. I am not speaking, of course, of the beauty
which strikes the senses, of the beauty of qualities
and appearances. I am far from despising this, but
it has nothing to do with science. What I mean
18 that more intimate beauty which comes from the
harmonious order of its parts, and which a pure
intelligence can grasp.”

Henri Poincaré






Abstract

In this mathematical essay we investigate and calculate the valid regions in the R3BP
where a satellite sent from different points on the surface of Earth can be found if we
want it to go through the equilibrium point L, of the Earth-Moon system. A Runge-
Kutta 45 Method called Dormand&Prince has been programmed in order find a numerical
approximation solution to the differential system of equations for the movement of the
third body. We have determined the coordinates of the launching points, the possible
angles, direct angles, and the possible velocities of firing off for our satellite among other
parameters. Furthermore, we have concluded the article by creating some graphs where
the results obtained with the code in order to answer the research question are clearly
stated and commented.
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Introduction

Immensity. That’s all that I felt when looking at the sky last summer. I observed the
Moon and how it changed its position from day to day; I was sure that there was a lot
of mathematics involving this beautiful topic. I can say firmly that curiosity and the
attitude of wanting to know more about planets and orbits, combined with my passion
for mathematics were the principal causes that made me want to develop this work.

Like almost in every assignment or task, my first idea of what I would do was very different
from the final result. My intention was to study the trajectory equation and focus on the
eccentricity of orbits in order to finally explain why does this parameter change as time
passes (talking in a large scale, of course), with Earth as the principal example. While I
was reading books, articles and thesis about the two and three body problems, orbits and
their eccentricity; I discovered the Lagrangian points, particularly L4, which appealed my
attention from the very first moment. In fact, in one of my first researches I found the
system of differential equations for the trajectory of a third body whose solution permits
us to know where it is at a given time, which cannot be solved analytically.

My main objectives in this paper are the following:

1. To explain accurately the mathematical (and physical) background, and to proof a
good number of the formulated propositions.

2. To combine different areas of mathematics and establish bridges between them in
order to give an answer to my research question.

3. To show how that the concepts studied are required and applied on my way to
finding the mentioned solution.

4. The most important and principal objective, to find the solution of my research
question, which can be stated as follows: which are the regions where a satellite
launched from different points on the surface of our planet Earth can be found if
we want it to go through the equilibrium point L4?

Other general objectives are to learn how mathematics can be found in a topic about which
I knew nothing before starting to work with it; and finally to challenge myself program-
ming in C++ and doing some elaborated illustration with GeoGebra [a] and GNUplot [b].
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CONTENTS

In order to accomplish my principal aim, I have divided my work in five chapters. It
is important to remark that I needed a solid physical background that would define the
problem in which I would be working during all the exploration and would give me the
equations that I would be analysing and working with. This is the reason why I have
dedicated two whole chapters to talk about the two-body problem and the three-body
problem, which discuss the dynamics of two and three bodies in space respectively. Added
to that, I felt that previous chapter was necessary in order to explain some concepts about
derivation, integration, a few important laws of physics and some important definitions
so that when explaining the two and three body problem, everything would be clear and
revised previously. As we will see further on, the three-body problem gives us a system
of differential equations that describes the motion of the third body. As I wanted it to
go from Earth to L4, I had to solve this system of differential equation using numerical
integrators, which would give a numerical approximation of the solution. Therefore, I
decided to assign an entire chapter to the explanation of numerical methods to solve
differential equations, and I would chose the one with less error in order to solve the
problem myself.

At this point, I must admit that the first four chapters are only the introduction and the
background of my real work. My objective is accomplished in Chapter 5, where I launch
my satellite from Earth and find the solution of the 3BP during a period of time until it
reaches L, from three points on the surface of Earth. It is important to remark that the
units that I work with are normalised, and that all the illustrations and programs I have
done them myself, including the cover page and the back cover.

14



Chapter 1

Previous Concepts

1.1 Basic Definitions

The aim of this section is to clarify some physic elements whose definitions I have con-
sidered necessary to introduce. These and other complementary definitions can be found

at [15] [17].

Definition 1.1.1. Reference frame A coordinate system is always introduced in order
to describe physical events that occur in space and time, such as the motion of a body. In
particular, the position of a moving body can be described by space-time events specified
by its space-time coordinates. An observer can be placed at the origin of the coordinate
system, and both the observer and the coordinate system act as a reference frame for
describing the position, velocity, and acceleration of bodies. The choice of the origin,
which as we said is the location of the observer, will determine the position vector of
the body; but the displacement, velocity, and acceleration vectors are independent of the
location of the observer.

Definition 1.1.2. Inertial reference frames If no forces act on an object, any refer-
ence frame for which the acceleration of the object remains zero is an inertial reference

frame.

Definition 1.1.3. Mechanical Energy We define the sum of the kinetic and potential
energies of a system as the mechanical energy of the system:

Epeen =K + U, (1.1)

where K includes the kinetic energy, i.e. all the energy due to motion, of all moving
members of the system; and U includes all types of potential energy in the system, i.e.
the energy that an object has due to its position in a force field.

15



1.2. NEWTON’S LAWS

Definition 1.1.4. Linear momentum The linear momentum of a particle or an object
that can be modeled as a particle of mass m moving with a velocity U is defined to be the
product of the mass and velocity of the particle:

p=mu. (1.2)

Definition 1.1.5. Angular Momentum The instantaneous angular momentum L of
a particle relative to an axis through the origin O is defined by the cross product of the
particle’s instantaneous position vector ¥ and its instantaneous linear momentum p:

L:=7xp (1.3)

Definition 1.1.6. Periapsis It is the closest point a second body comes to the first one
during an orbit. If the body of greater mass is the Sun, the point where the orbiting body
15 nearest to it is called the perthelion. The contrary case, i.e. the point where an orbiting
body is furthest from the body with greater mass, is called apoapsis.

Definition 1.1.7. Centre of mass We consider a system consisting of two particles
with masses my and mo. The position of the center of mass of the system can be described
as being the average position of the system’s mass. It is located somewhere on the line
that goes through the two particles, and is obviously closer to the particle having larger
mass.

The x-coordinate of the centre of mass of the pair of particles is given by:

M1 + Moy
T = - 1.4
oM my1 + Mo (14)

FExtending this concept to a system of n particles with masses m; in three dimensions, the
x coordinate of the centre of mass of n particles is defined to be:

MiTy + MoTy + M3T3 + oo + My D Ml ) T 1 me (1.5)
my + mg + msz +m, DM M M i U

Tom =

1.2 Newton’s Laws

Isaac Newton stated that “An impressed force is an action exerted upon a body, in order
to change its state, either of rest, or of uniform motion in a right line”. Galileo Galilei
recognised the idea that force produces motion many centuries before Newton’s birth,
but this last scientist extended the concept of force to any circumstance that produces

16



CHAPTER 1. PREVIOUS CONCEPTS

acceleration. All this knowledge can be summed up in his three laws of motion. Extended
information can be found at [15, Ch.5,].

17



1.2. NEWTON’S LAWS

Newton’s First Law of Motion: The Law of Inertia

In the absence of external forces and when viewed from an inertial reference frame, an
object at rest remains at rest and an object in motion continues in motion with a constant
velocity, that is, with a constant speed in a straight line (linear motion).

Newton’s first law makes no distinction between an object

at rest and an object moving with constant (nonzero) veloc- U= ctt
ity. Whether an object remains at rest or remains moving ._»
with constant velocity depends on the reference frame in

which the object is observed. Suppose you are on a train F=0

that is going along a straight path and at constant altitude.
You carefully place a tennis ball on your seat tray (which
is horizontal). Relative to the plane, the tennis ball will
remain at rest as long as the train continues to move at
constant velocity relative to the ground. Relative to the ground, the tennis ball remains
moving on a straight line with the same velocity as the plane.

Figure 1.1: Newton’s First
Law.

Now, suppose that the train suddenly accelerates forward (relative to the ground). You
will then observe that the tennis ball on your tray starts to roll toward the rear of the
train, accelerating (relative to the plane) even though there is no horizontal force acting
on it. In this accelerating reference frame of the plane, Newton’s first-law statement does
not apply. Newton’s fist-law statement applies only in reference frames known as inertial
reference frames.

Newton’s Second Law of Motion

When viewed from an inertial reference frame, the accel- >
i o ) F
eration of an object is directly proportional to the net P Z

force acting on it and the reciprocal of the mass of the _
object is the constant of proportionality. Thus, . >

!

~.

. - >
., 2 a
- Fnet - _’
a= where I, = Z L. (1.6) .
m - Figure 1.2: Newton’s Second
Law.

Isolating ﬁnet we obtain the following mathematical statement:

—

Fnet = ma. (17)

In both the textual and mathematical statements of Newton’s second law, we have in-
dicated that the acceleration is due to the net force ﬁnet acting on an object. The net
force on an object is the vector sum of all forces acting on the object. Equation (1.7) is
a vector expression and hence is equivalent to three component equations:

Fnet,x = May, Fnet,y = My, Fnet,z = ma;. (18)

18



CHAPTER 1. PREVIOUS CONCEPTS

Newton’s Third Law of Motion

When two bodies interact, the force Fpa exerted by object B on object A is equal in
magnitude and opposite in direction to the force Fyp exerted by object A on object B.
Thus,

Fpi= —Fap. (1.9)

Newton’s third law describes an important property

of forces: forces always occur in pairs. If a force is =, _ F,
exerted on some object A, there must be another object F

B exerting the force. This law states that the forces are ._> <_.
equal in magnitude and opposite in direction. That is,

if object A exerts a force on object B, then B exerts an Figure 1.3: Newton’s Third
equally strong but oppositely directed force on A. Law.

Each pair of forces is called a Newton’s third-law (N3L)

pair. It is common to refer to one force in the pair as an action and the other as a
reaction. This terminology is unfortunate because it sounds like one force “reacts”to the
other, which is not the case. The two forces occur simultaneously. Either can be called
the action and the other the reaction. If we refer to a force acting on a particular object
as an action force, then the corresponding reaction force must act on a different object.

Newton’s Law of Universal Gravitation

It is a well-known legend that Isaac Newton was having a nap under a tree when suddenly
an apple fell from the tree and smacked on his head. From this observation, he imagined
that perhaps all objects in the Universe are attracted to each other as the apple was
attracted to the Earth. Analysing astronomical data on the motion of the Moon around
the Earth, Newton stated that the force law governing the motion of planets was the same
as the force law that attracted a falling apple to the Earth.

Newton’s Law of Universal Gravitation asserts that

every particle in the Universe attracts every other particle with a
force that is directly proportional to the product of their masses and
wnwversely proportional to the square of the distance between them.

Putting into a formula this information, he stated that the magnitude of the gravitational
force F, is:

: (1.10)

where
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1.3. CONIC SECTIONS

e m; and msy the masses of the two particles,
e 7 is the distance between both particles,

e (G is the universal gravitational constant, whose value in SI units, measured by
Henry Cavendish in 1798, (G = 6.674 - 107 N - m? / kg?).

1.3 Conic Sections

In this section we will study basic properties of conic sections, which are the curves
that can be described as graphs of second-degree equations in two variables, obtained by
intersecting a plane and a right circular cone. A circle can easily be obtained by cutting
the cone with a plane perpendicular to the cone’s axis. A plane parallel to a side of the
cone produces a parabola; and a plane at an arbitrary angle to the axis of the cone forms
an ellipse. Finally, an hyperbola can be obtained by cutting the cone with a plane parallel
to the cone’s axis. If we extend the cone through its vertex and form a second cone, we
will find the second branch of the hyperbola.

Figure 1.4: Conic sections obtained by cutting a cone with a plane having an arbitrary
inclination.

The four named conic sections are shown in Figure 1.4 (circle, ellipsis, parabola and
hyperbola). As it has been said, we can obtain them by cutting the cone with a plane
and an angle « to the cone axis. These and additional information to amplify the concepts
explained can be found in [1].

20



CHAPTER 1. PREVIOUS CONCEPTS

1.3.1 Circles

A circle is the closed curve formed by a set of points in a plane that are equidistant from
a given point, called the centre. The distance between any of this points to the centre is
called the radius:

Radius

\/

(=r,0) d=00 [0 x

(07 - T)

Figure 1.5: Definition of a circle: major elements.

The centre-radius form of the equation of a circle with its centre at the origin and radius
ris:

xQ—I—y2 =72 (1.11)
where

r is the radius of the circle.

The origin is located at the centre of the circle.

The two a-intercepts are at the points (r,0) and (—r,0).

The two y-intercepts are at the points (0,7) and (0, —r).

Now, considering the circle of radius R centred at the point (0, 0), the parametric equations
for this circle are the following:

x = rcos(t); y = rsin(t); t €0, 2n7]. (1.12)

21



1.3. CONIC SECTIONS

1.3.2 Ellipses

An ellipse is the closed curve in a plane such that the sum of the distances (d; and d,)
from each point to two fixed points is constant:

di+ dy = 2q B

Vi ° Va

By

Figure 1.6: Some characteristics of an ellipse.

Where

e F) and Fy are each of the two fixed points called foci (singular, focus).

e V] and V5 are the points where the line containing both foci intersects the ellipse.
e The semi-major axis (a) is half of the distance between the vertices.

e The centre C of the ellipse is the midpoint of the major axis.

e By and B, are the points where the line perpendicular to the major axis that goes
through the centre intersects the ellipse.

e The semi-minor axis (b) is half of the distance between the co-vertices.
e The focal distance (¢) is the distance between the centre and one of the two foci.
e The eccentricity (e) is the quotient of the distance between the foci and the semi-

major axis (e = £).

The equation of an ellipse with its centre at the origin is

mQ y2
S tE=1 (1.13)

where a is the semi-major axis, b is the semi-minor axis; the xz-intercepts are at the points
(a,0) and (—a,0); and the y-intercepts are at the points (0, ) and (0, —b).

22



CHAPTER 1. PREVIOUS CONCEPTS

Figure 1.7: Important points of an ellipse: x, y-intercepts

The parametric equations of an ellipse are the following (considering equation (1.13)):

x = acos(t); y = bsin(t); t €10, 2n]. (1.14)

1.3.3 Parabolas

The set of all points in a plane that are equidistant from a line and a point not on the

line is called a parabola:

At figure 1.8 we can see the different elements of a
parabola:

e /s called the focus of the parabola, and it is the
point mentioned above at the definition.

o directriz is the line from which any point of the
parabola is equidistant with the focus.

XLIJOOI(]

e I/ is the wvertex of the parabola: its highest or
lowest point, also known as the maximum or the

minimum.

Figure 1.8: Main elements of a
parabola.
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1.3. CONIC SECTIONS

Parabolas are quadratic functions, and the
the equation

v =aly—h)’>+k, (1.15)

where a,h and k are real numbers. The
vertex has coordinates (k,h) and the focus
(k + 4, h). Talking about the parametric
equations of a parabola, they are as follows:

r=tan"'(t);  y=[tan""(t)];

(1.16)

1.3.4 Hyperbolas

teR.

standard form to describe them is given by

xT

Oy/T =4

Figure 1.9: Coordinates and equations of

the major elements of parabolas.

The definition of a hyperbola is the set of points in a plane such that the absolute value
of the difference of the distance of each point from two fixed points (foci, singular focus)
is constant. Both foci are united by means of the transverse axis. Two branches form the
graph of a hyperbola, and each of these branches intersects the transverse axis at a point

called vertex:

o

Figure 1.10: Important parts of a hyperbola with their coordinates and formulae.
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CHAPTER 1. PREVIOUS CONCEPTS

Explaining into detail Figure 1.10,

e /' and /% are the foci of the hyperbola.
e /' is the transverse axis: the line that goes through both foci.

e /] and 1/, are the vertices that cross the x axis at points (—a,0) and (a,0) respec-
tively.

The equation of a horizontal parabola with centre at the origin and x-intercepts at (a, 0)
and (—a,0) (figure 1.10) is:

r Yy (1.17)

where a > 0 and b > 0.

Considering a hyperbola following this equation: 22 — y? = r?; the parametric equations
for the right branch are:

x = rcosh(t); y = rsinh(t); t e R, (1.18)

el + et et —e
and sinh(t) =

where: cosh(t) =

1.4 Integral Calculus

1.4.1 Multiple integrals

A multiple integral is a generalisation of a definite integral, i.e. an integral with start and
end values, which graphically represents the signed area of the region in the xy-plane that
is bounded by the graph of the function f; to functions of more than one real variable, for
instance f(a,b), or f(a,b,c). Particularly, integrals of a function over a region in R?, that
is a function depending on two variables, are called double integrals, and integrals of a
function of three variables over a region of R? are called triple integrals. Mathematically,
a multiple integral is defined as follows:

///D F(a1, 9, s 1) day ... dip, (1.19)

where f(x1,x9,...,x,) is a function in n variables over D, which is the domain of
integration. Normally, D is represented by nested limits of integration in the reverse order
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1.4. INTEGRAL CALCULUS

of execution, that is, the leftmost integral is computed the last and so on. The difficulty
added in multiple integrals falls on the fact that sometimes it is not trivial to find the
limits of integration in the domain D.

1.4.2 Fubini’s Theorem

Providing conditions for interchanging the order of integration in a multiple integral,
Fubini’s theorem is a very powerful and useful tool. Given that sums are essentially
special cases of integrals (with respect to discrete measures), it also gives conditions for
interchanging the order of summations, or the order of a summation and an integration.
The theorem’s statement is the following:

Theorem 1.4.1. Let f : [a,b] X [c,d] — R be a continuous function. Then, there exist
the integrals

) /ab (/Cdf(x,y) dy) dr,
b / (/abf(x,y) ) dy,

which coincide.

(1.20)

Observations

1. If we have a more complex integral such that domain of integration D is not given
by intervals (it is not rectangular) but it is defined by ¢;(x) and ¢;(x) we can
generalise the expression above by stating that

2 ph2(z)
a)/ /() f(z,y) dy dx,

vz ry2(y)
b)/ / f(x,y) dv dy
y1 Jy(y)

are equal if the conditions stated at the theorem apply.

(1.21)

2. If f: [a,b] X [c,d] — R can be expressed as g(z)h(y), equations (1.20) are equivalent
to

/abg(x) dx /cdh(y) dy. (1.22)
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CHAPTER 1. PREVIOUS CONCEPTS

da()

D Ya(y)

I I
I I
I I
I I
I I
I I
I I
I I
x T 2 x T

Figure 1.11: Example of different limits of integration of (1.21).

1.4.3 Change of variables for multiple integrals

Sometimes it is useful to describe the points of the plane using other coordinates than the
Cartesian ones (x,y), simply because there are limits of integration that can be expressed
easier in other systems of coordinates. The change of one variable for another is in
a geometric sense a transformation from a determined space to a different one, and this
transformation requires a change in the integration region and the addition of a co-relation
factor to the differential. Given a transformation that follows the relation:

W, yn) — fln(x, zoy o xn), ooy, 2, o ). (1.23)

Expressing the domain in the new coordinates x; and multiplying by the co-relation factor,
we obtain a multiple integral equal to the original one:

/// fyr, . yn)dyr ... dy, = // flz1,... xn) || doy ... dxy,, (1.24)
D(9) D()

where:
Oy .. Oy
D(yy,. ...y, O Ozn
J— (y1, 73/): SRRV (1.25)
D(Q:la ) xn) yn Ayn
R
see [12].

In the following lines, we will study how to change from Cartesian coordinates to Spherical
ones.

Change to Spherical Coordinates

27



1.5. ORDINARY DIFFERENTIAL EQUATIONS

Supposing that we want to change our function f(z,y, z) to a spherical one following that
D= {z*+y*+ 2* < R?}.

Expressing x,y and z with spherical coordinates (r € [0,00) , 6 € [0,27) and ¢ € [0, 7]):

x(r,0,¢) = rcosfsin ¢
y(r,0,¢) = rsinfsin ¢ (1.26)
z(r, ) = rcos ¢

Now, if we calculate |J| from equation (1.25), we get that:

Oz Oz Oz . . .
or 90 3¢ cosfsing —rsinfsing rcosfcoso
_ |9y 9y Qy| _ | : . )
J = gr ‘39 g¢ = |sinfsin¢ rcosfsing rsinfcoso
4 Z z o .
o 00 09 CoSs ¢ 0 7 sin ¢

= cos ¢(—r?sin? @sin ¢ cos ¢ — 1% cos? O sin ¢ cos ¢)
+ (—7sin ¢)(r cos? Osin® ¢ + r sin” § sin® ¢)
= —r?cos® ¢sin ¢(sin® 6 + cos® §) — r?sin® (cos? O + sin® )
= —r?cos? ¢sin ¢ — r?sin® ¢
= —7r?sin ¢(cos® ¢ + sin” ¢)
= —r?sin ¢.

Taking the absolute value of this last result, we get that |J| = 7?sin¢. Finally, we can
express equation (1.25) as:

/R /\/W /\/R2y222

R p2mpm
flz,y, z dxdydz:///fr,@,gzﬁr%ingzﬁdgbd@dr.
VRZ=2 \/m( ) 0Jo ( )

’ : (1.27)

1.5 Ordinary differential equations

This section is intended to give a general idea and some basic definitions and theorems
about ordinary differential equations (ODE’s in abbreviated form). We will contextu-
alise historically differential equations in general and will define them before coming into
ordinary differential equations. For further information see [9].
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CHAPTER 1. PREVIOUS CONCEPTS

1.5.1 An outline of the historical context

Everything started at 1202 with the observations that Leonardo de Pisa made with respect
to the rise in a population of rabbits and, supposing that only the rabbits of the two
previous generations take part in each reproductive period and that each couple generated
a new one; de Pisa expressed his observations in the following mathematical equations:

Tpel = Tn + Tne1,

where

e 1, is the number of male-female couples of rabbits.
e n is the particular generation of rabbits, and hence n > 0.
e 1y and r; equal to one, and the two rabbits that form these two generations are

called the initial couple.

This is the well-known Fibonacci sequence, which has the general solution ¢y (%5) +

2
as it may, seem the golden ratio occurs in the solution of differential equations (see [10]).

Co (%5) . The number Y5 is labelled as ©, and it is named the golden ratio. Strange

Intuitively, a differential equation relates a function f with its derivatives f/, ..., f™. Differ-
ential equations are studied from a large amount of different perspectives. It is important
to remark that generally, these kind of equations don’t have a solution, only the simplest
differential equations are solvable by explicit formulae. Nevertheless, mathematicians
have developed several methods in order to find some properties of their solutions with-
out finding their exact form.

Differential equations can be classified into some groups, for instance ordinary differential
equations (ODE’s), which are the ones with one or more unknown functions, depending
only on one independent variable; and partial differential equations (PDE’s), which are
differential equations where the unknown function or functions depend on more than one
independent variable, and are pretty more complex . In this chapter we will only study
the first group. Both ODE’s and PDE’s are separated as linear (if the unknown function
and its derivatives appear to the power of one) and nonlinear otherwise.

Newton listed three kinds of differential equations in his 1671 work Methodus fluxionum
et Serierum Infinitarum:
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1.5. ORDINARY DIFFERENTIAL EQUATIONS

L= fay) (1.28)

In 1676, Leibnitz referred to these equations as equatio differentialis. Both Newton and
Leibnitz developed some methods in order to solve physical and geometric problems.

Euler had a very important role in this area of mathematics in the 18th century. He was
the first mathematician who understood and defined clearly what the concept of function
meant, and this fact made easier the resolution of ODE’s.

Peano, Lipschitz, Cauchy and Picard analized mathematically differential equations, and
the first results that proved the solutions of ODE’s under some general conditions were
estabished.

Henry Poincaré made the most important contribution at the beginning of the 20th cen-
tury: the named qualitative theory of ordinary differential equations.

As all concepts and elements, differential equations has been a subject whose meaning
and way of understanding has evolved throughout history. In the past, finding a solution
of the differential equation meant to empress it in terms of elemental functions. However,
as we have said before, this was hardly impossible in the large majority of the cases,
so mathematicians would be satisfied when they found implicit relations in the solutions,
without finding the closed formulae. In the 17th century Newton stated that all ODE’s can
be solved using power series with indeterminate coefficients. Nowadays, numerical calculus
has been strongly developed during this last century at the same time with informatics,
computers and the qualitative theory, which tries to find rigorously properties of these
solutions without knowing them explicitly.

1.5.2 Differential equations

Formally, a differential equation is any equation in which a function or more than one are
the unknowns, and depend on one or more independent variables, which appear together
with their derivatives or partial derivatives in the equation. The simpler differential
equation requires the calculation of the primitive function: given the function f(z,y), we
look for the unknown function y = y(z) such that

y'(x) = flz,y). (1.29)
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The order or degree of a differential equation is the number of the highest derivative in
the equation.

1.5.3 ODE’s

Introduction

An ordinary differential equation of order m has the form:

ft,z, 2 2", ..., x™) =0, (1.30)

where

F:SCRxR™ - R.

being S is an open subset, i.e. a subset which doesn’t contain any of its boundary points.
Each variable (¢,z, ..., 2(™) goes to F(t,z, 2/, ..., (™).

A function is a solution of an ODE of m order if its m first derivatives have a certain
relation at every point.

Let = £(t), where € : (a,b) C R — R. £(¢) is a solution of (1.30) if

F(t,&(t),€1), ..M () =0, Vte (a,b). (1.31)

We will illustrate the concept of an ordinary differential equation with an example. We
have to find the solution of the first order ODE equation v = y: F(x,y,y') = v — y.
Integrating both sides of the first equation we get that:

/@:/dx
Y
lny=xz+c (1.32)

y=ce".

We will say that a n-dimensional ODE is autonomous if the function f does not depend
on the independent variable, i.e. ¥ = f(y), and non autonomous otherwise.

An ODE of order m in normal form, i.e. in a way such that the derivative of greatest
order appears isolated in function of all the other ingredients of the equation, can be
re-written as a first-order system with equivalent m dimension (where equivalent means
that if we solve one of the equations we can look for the solutions of the other).
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1.5. ORDINARY DIFFERENTIAL EQUATIONS

Consider the equation of the pendulum system

y'(t) + %Sin y(t) =0, (1.33)

where y is the angle with respect to the vertical axis, ¢ is the acceleration due to gravity
and [ is the length of the pendulum. This is an autonomous ODE of order two, and we
want to express it in normal form, i.e. y™ = f(t,y,9/,...,y™ V) and then re-write this
n-ordered scalar equation to a vector equation (i.e. of first order) and dimension n:

—

7 = F(t,7)
!
T filt,x, xa, ., ) (1.34)
T, falt,xy, Toy oy Th)

As mentioned, the first step is to express the pendulum equation in such a way: y”(t) =
—a?siny, being a? = . Now, we define & = (v1,72) as 21 = y and x5 = y'. Hence,

13/1 = T3
xy =y" = —a*sinz;.

— —

Now, & = f(Z), where f(Z) = (x2, —a®sinx,), as we wanted.
Existence and uniqueness of solutions

Given the n-dimensional system of ODE’s ¢ = f(¢,y) and the values (¢, yo) € R X Rn,
known as initial conditions, the associated initial value problem (IVP) or Cauchy Problem
consists on finding a solution function y(¢) of the ODE verifying y(to) = vo.

For instance, consider the 1-dimensional IVP

{y, - (1.35)

y(to) = vo,

being a € R a fixed value. As calculated in example (1.32), the general solution of the
problem equation is y = ce®, where ¢ € R is a constant. From the initial condition
y(to) = yo, we get that ¢ = g, so the unique solution of the Cauchy problem is y(t) =
yoea(t—to).

Picard’s Theorem is a basic and important result about existence and uniqueness of ODE’s
solutions. Before stating it, we need some previous definitions.
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Given F' : U C R" — R™, we will say that F'is Lipschitz or L-Lipschitz with Lipschitz
constant L > 0 if and only if

|F(21) — F(x2)|| < Ll|21 — a3, Va1, 20 € U, (1.36)

where || - || indicate any norm in R™ and R™.

We will say that a function F' is locally Lipschitz if around every point we can define a
Lipschitz constant, i.e. given F': U C R" — R™, U open, we will say that the function
is locally Lipschitz if Vxy € U there exist L,, > 0 and V,, C U around z, such that
Fyv,, : Voy CR" = R™ is Ly,-Lipschitz.

After these definitions, we can state Picard’s Theorem:

Theorem 1.5.1. Given that f = f(t,z) is a function defined in Q@ C R x R — R", Q
an open subset, f continuous and locally Lipschitz with respect to x. Given (tg, o) € €2,
being a,b > 0 such that the "rectangle”

Rop(to, zo) == {(t,z) e Rx R" : ||t —to|| < a, ||z — x| < b}

verifies Rqp(to, xo) C Q. We define

M = sup ||f(t,l’)||,

(t,x)ERq b (to,w0)

a :=min{a,b/M}.

Then there ezists a unique solution x(t) for the IVP

¥ = f(t, z); x(tg) = wo;
defined fort € 1,(ty) := [to — a, o + .

Further on, we will say that as our ODE is C!, i.e. it is continuously differentiable; there-
fore it is locally Lipschitz, and hence it has a unique solution for out IVP. Nevertheless,
we have to prove that if a function is C! it is locally Lipschitz (see lemma 1.5.1).

Lemma 1.5.1. Given a function f : R" — R" that is continuously differentiable (i.e.
C'), it is also locally Lipschitz.

Proof. Let x,& be respectively the centre and the radius of some ball B(z,&). As the
closure is compact, % is bounded by some ball. Given the points z,y € B(Z,§), we have:

f@) =) = [ =Dy

0
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1.5. ORDINARY DIFFERENTIAL EQUATIONS

Hence we can get the bound:

1) = sl < [ 12D o - ) < Lo -

€T
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Chapter 2

The Two-Body Problem

2.1 First Approach

Going back in time, despite the fact that Newton found a geometrical solution of the Two-
Body Problem about 1685, curiously, the analytic solution of the problem for spheres of
finite size was not accomplished until many years later. In Europe, the methods of the
calculus were developed at the beginning of the eighteenth century, but Newton’s system
of mechanics did not find immediate acceptance. It wasn’t until Voltaire vigorously sup-
ported the Newtonian theory, after his visit to London in 1727, that the French accepted
Newton’s explanations. Before that, they preferred the vortex theory of René Descartes.
In a parallel way, in England, mathematicians continued to employ the geometrical meth-
ods of the Principia, and this fact also delayed the analytical solution of the problem.
Daniel Bernoulli was probably the mathematician who first gave an analytical solution for
the problem, but the 2BP was certainly solved in detail by Euler in 1744 in his Theoria
motuum planetarum et cometarum.

In this chapter we consider the problem of two isolated bodies of masses m; and msy
respectively, with r; and ry denoting the position vectors of the two bodies relative to a
fixed origin O. Moreover, Newton’s laws can be applied in our problem, since we are in
an inertial reference frame and no force is acting on the bodies except for the force of
mutual gravitational attraction. Specifically, it asks

“Given at any time the positions and velocities of two massive parti-

cles moving under their mutual gravitational force, the masses also

being known, calculate their position and velocities for any other

time”.
The two-body problem is the easiest specific case of the n-body problem. It describes how
two unconstrained rigid bodies in close proximity having arbitrary spatial distribution of
mass, charge or similar field quantity, orbit around each other; and has a wide range of
areas of applications, for instance molecular dynamics or satellite formation flying. Its
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importance relies on the fact that, contrarily to the Three-Body Problem (and N-Body
Problem), a general solution can be found. This is due to the fact that the 2BP can be
reduced to a central-force problem, as it will be shown later on in the chapter.

-

2@
Mo

Fy

o

mi

Figure 2.1: Simple approach to the two-body problem: two punctual points with their
respective attractive forces.

2.2 Formal Approach

A good way to define formally the 2BP is that it specifies and analyses the dynamics of
two otherwise unconstrained rigid bodies in close proximity that only interact with each
other, which we will consider as punctual points.

It is important to mention the fact that we have made two hypothesis in this problem.
(1) On the one hand, we assume that both bodies are symmetrically spherical, and
hence we can reduce them to punctual masses (see 2.2.1). (2) On the other hand, our
second hypothesis is that the two bodies are isolated; thus, the only force that acts is
the attractive gravitational force between them. As we stated that Newton’s Laws can
be applied, we can say that the attractive gravitational force that m; exerts on my, ﬁ12,
is equal in magnitude and opposite in direction to the force that msy exerts on my (by
Newton’s Third Law of Motion).

Lemma 2.2.1. Guven that a body has a spherical symmetry, i.e. its density only depends
of its distance to the centre, it can be reduced to a punctual mass.

Proof. Defining V' = {(z,y, z) € R¥|2? + y* + 2* < R*} we can express the total mass of

the body M as:
M = /// Va2 + 2 + 22) dz dy d=. (2.1)
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CHAPTER 2. THE TWO-BODY PROBLEM

Applying lim,, ,,, at equation (1.5) for the Centre of Mass:

(2.2)

= Jy P(\/m) (z,y,2) de dy dz
M= i ‘

We can change the coordinates of the numerator of equation (??) from Cartesian coordi-
nates to the Spherical ones following the procedure shown at 1.4.3.

For each of the coordinates x,y and z:

/// 7)1 cos @ sin® ¢ dr df d¢ = / 3dr/cos€ deo 31112(;5 do = 0;

//7” P)risinfsin® ¢ dr df dg = / Bdr/sme @ [sin 6 o= 0; (23)
/72777 )73 cos ¢ sin ¢ dr df) dp = / 3d7a/ /Cos¢31n¢ dé =0

As the numerator of equation (2.2) is zero, we have shown that 7oy = (0,0, 0). O

In this section we will explain how, applying Newton’s second law of motion and the
Gravitational law, after a mathematical procedure, we end up reducing our initial equation
to a Central-Force Problem.

Firstly, it is important to remember that the Two-Body Problem is set in an inertial ref-
erence frame, and therefore we can apply equations (1.7) and (1.10). Our first hypothesis
stated that the only force that interacted between the two bodies was the gravitational
force, so for the body with mass m, since F},.; = F, we can equalise the previous equations
obtaining a new one:

m1Mmso
mia; = G .

(2.4)

r2

Since we know that the acceleration is the second derivative of the position, we can
re-write equation 2.4 in vectorial form as:

i Gmymsy
mir = = _ =13
|75 — 71|

(Ty — 7). (2.5)

Applying Newton’s third law of motion, we get the following equation for the body with
mass mes:
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= Gm1m2

maore =

(T — 7). (2.6)

NEEGE

Once we have the system of equation formed by equations (2.5) and (2.6), we can detect
some observations:

1. It’s an autonomous system: the position, velocity and acceleration vectors are
time-dependent, but the system does not depend explicitly on the independent
variable (the time).

2. We have 2 equations, each of them three-dimensional, and each of them of second
order. Hence, we have 12 unknowns (77,73, 7,72)(t) € R® x R? x R? x R3:

BRSBTSy
= - To — T
U |75 — 713 ? !
o | m U
25~ Gm, ) (2.7)
2 I/ =
Us

In equation (2.7) we have introduced the notation 7 = 7, and 7 = Ty.

2.3 Reduction to a Central-Force Problem

Once we have simplified the masses m; and my from equations (2.5) and (2.6) respectively,
we can subtract the first simplified equation to the second one as follows:

LoD Gmy S o Gmy S o
T2 7”1:—?(7”2—7’1)— _,_q3(7”2 )
172 = 7| 172 — 7| (2.8)
__G(m1+m2)(7?_7?) '
T

If we call 7 := 7 — '}, we obtain a new equation with only 6 unknowns: (7, 7) € R3 x R3.
We can also introduce a mass parameter u = G(m1 + my), and we will have a problem
in which the acceleration (') depends on a function which depends only on the radius
(f(r)); therefore, we will have the reduction to a central-force problem:

Pr_o. (2.9)

r—|—3

<
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CHAPTER 2. THE TWO-BODY PROBLEM

Equation (2.9) is the 2BP equation of motion. The results obtained from this equation
will be only as accurate as the assumptions (1) and (2).

We say that the Mechanical Energy (1.1) and the Angular Momentum (equation
(1.3)); in particular, the quantities h = 7 x ¥, called the Speci fic angular momentum,
and & = v?/2— pu/r are conserved as we are in an isolated system with no nonconservative
forces acting and there are no dissipative mechanisms.

Given that the angular momentum is different than zero, the solution of the problem
given by equation (2.9) is given by the following equation (see [4]):

h?/p

=1 2.1
" 1+ ecosf (2.10)

The equation (2.10) is called the Trajectory Equation, and it will be studied accurately
in the next section. Nevertheless, it is important to state that:

h is the speci fic angular momentum (E =7 X ).

p is the mass parameter (u = G(my + ma)).

e is the eccentricity of the curve.

6 is the angle between 7 and the perihelion.

Figure 2.2: Illustration of the trajectory equation (2.10) with a body describing a
parabolic (left) and an elliptical (right) trajectory.

It can be observed from Figure 2.2 that the pink dot is the body orbiting around the
origin (blue dot) describing both parabolic and elliptical paths. The position vector of
the pink-dotted body with respect to the origin is denoted by 7, and the angle between
this position vector and the orange-dotted perihelion is labelled as 6.
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If the angular momentum is zero, the position and velocity vectors of the bodies are
parallel and go in the same direction (but not necessarily in the same sense!). Hence, the
bodies will move in a straight line, and either they will collapse or they will separate until
they escape.

2.4 A Study of the Trajectory Equation

Now let’s study the case where h # 0. From the Equation of the Trajectory (2.10), we
can classify the different types of trajectories depending on their eccentricity. As it has
been said, the eccentricity indicates the deviation of the orbit from a perfect circle. Four
trajectories are distinguished:

Eccentricity | Type of Orbit | Colour
e=0 Circular [ |
0<ex<l1 Elliptical
e=1 Parabolic
e>1 Hyperbolic |

Table 2.1: Brief summary of graph (2.3).

Figure 2.3: Different trajectories repre-
sented by their eccentricity.

Furthermore, (see [4, page 29] [5]) we can express eccentricity as:

2
e= ,/1+E5h2. (2.11)

From equation (2.11) we can see that orbits can also be classified by their specific me-
chanical energy and their specific angular momentum.

We observe that the domain of a square root encompasses all non-negative values. If
£ <0, then e € [0, 1] and so,
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CHAPTER 2. THE TWO-BODY PROBLEM

b <

21| V2IEl

For the extreme values of h, e = 0, and therefore we will have a circular trajectory. If
h # 0, e € (0,1), and the trajectory will be elliptical. The semi-major axis and the
semi-minor axis are given by:

(2.12)

Pl _ n
1—e2  2E
h2j €] (2.13)
b= Fo_owi—e

We must also consider the case when £ < 0 and h = 0: we will have a collision line.

If £ = 0, taking into account that h # 0, e = 1, and so the trajectory will be parabolic.
When £ is also zero, there will be a collision line.

The last case to consider is when €& > 0. Taking into account that h # 0 (because if not
we would have a collision line), e > 0, and so the trajectory will be hyperbolic.

Equation (2.11) is illustrated in Figure 2.4:

Figure 2.4: Eccentricity in terms of the specific energy and the specific angular momen-
tum.

It can be said from Figure 2.4 that e is the eccentricity of the trajectories of the body
represented at Table 2.1, £ its specific energy and h its specific angular momentum
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2.4. A STUDY OF THE TRAJECTORY EQUATION

It is important to comment that we can make a distinction between trajectories with
£ < 0 and the ones with & > 0. Trajectories with £ < 0, i.e. circular and elliptical
paths, have an enclosed movement, whereas parabolic and hyperbolic trajectories have a
non-enclosed movement. This observation has a direct implication related to the radius,
which we will discuss some lines below. The following graph represents the potential
energy (&, = =¥ see [12]) with respect to the radius:

Elliptical &
Circular

Figure 2.5: Trajectories classified by their potential energy with respect to the radius.

The different trajectories are separated in Figure 2.5 according to their potential energy.
Some observations can be made, for instance that elliptical and circular movements (&£, <
0) have an enclosed range for its radius. Particularly, in circular trajectories, we can state
that the radius is not only enclosed but it is constant. On the contrary, the radius the
parabolic and hyperbolic cases is not enclosed, it can take the values (0, 400).

Finally, I have created a summary (see Table 2.2) exposing the type of orbit and their
respective properties concerning the eccentricity, the energy, the radius and the movement
of the body:

Elliptic | Parabolic | Hyperbolic |
Eccentricity (e) e=0 |0<ex<l1 e=1 e>1
Energy (€) <O E=0 E>0
Radius value constant ‘ not constant
Type of movement bounded ‘ not bounded

Table 2.2: Summary of the different types of orbits and their properties.
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CHAPTER 2. THE TWO-BODY PROBLEM

2.5 Getting back the two bodies

In the last sections we have shown the solution of the central-force problem and analysed
it, but we must remember that this last problem was a reduction of our initial problem,
which was the Two-Body Problem. As its own name says, in this problem we have two
bodies, so we have to remember our statement (r = ro — 1) and undo this change. From
equations (2.10) and (1.5), we can state that:

Lemma 2.5.1. In an inertial reference frame where the origin is set at the centre of
mass, the dynamics of two bodies which are at positions r1 and ry is given by:

M2
a)r, = Ean— r ;
mi+m
my (2.14)
b)rg = ———r,
mi + mo
where 1 is defined by (2.10).
Proof. By the formula of the centre of mass ((1.4)) we can deduce that:
o (mutma)ren — mary
1 p— :
Setting our reference frame at rop; = 0, we obtain that:
mo
r = ——"To.
my
Applying that (ro =r +11):
m m m m —m
r=——rg=——(r+r)=rl+ —)=——r=r=——r
m m, mq my my + mgy
Analogously we could follow the same procedure and find 5. m

Corollary 2.5.1. Knowing the type of trajectory described by the position vector r, i.e.
if it is circular, elliptical, parabolic or hyperbolic; the type of trajectories depicted by the
position vectors of the two bodies, defined as ry and ro, are also known, as they are the
same.

Proof. From equation (2.14), it is known that r = ¢;7 and 75 = cor are multiples of r,
if the position vector r follows a particular trajectory, r; and ro will follow the same one
with a variation given by the constants ¢; and ¢y, which will make the trajectory more or
less wide. [
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The Corollary 2.5.1 is illustrated in Figure 2.6, showing the two bodies of masses m; and
mo following the same type of trajectory in different cases. The line that unifies both
bodies represents that we can express the position of one body with respect of the other
one, and so, it is as if they were “attached”:

N

my

my

Figure 2.6: Back with the two bodies orbiting with circular (left) and elliptical (right)
trajectories.
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Chapter 3

The Restricted Three-Body Problem

3.1 Historical Background

Whittaker described the three body problem as “most celebrated of all dynamical prob-
lems”, and for Hilbert it fulfilled the necessary criteria for a good mathematical problem.
It can simply be stated:

“three particles move in space under their mutual gravitational at-
traction; given their initial conditions, determine their subsequent
motion”.

It seems quite a simple statement, but it belies the complexity of its solution. At the
beginning of the 17th century, after having observed carefully what was going on in space,
Kepler proposed his three laws for planetary motion, describing the elliptical orbits of the
planets around the sun. Since Johannes Kepler first formulated his laws, scientists en-
deavoured to solve for the equation of motion of these bodies. In 1687, Newton published
his Philosophae Naturalis Principia Mathematica, one of the most important books in the
history of science, where he formalised this ideas and announced his laws of motion and
gravitation, stated at section 1.2.

Newton proved Kepler’s laws, and then he turned his attention to other systems than
a Sun-Planet system, with higher degrees of complexity. He began to study systems
containing more than two bodies. One of his main considerations was the Sun-Earth-
Mon system. When he tried to analyse these kind of situations, we came up with a lot of
difficulties, and he remarked “../his/ head never ached but with the studies of the moon”.

After Newton’s death, it was not until 1747 that Alexis Clairaut announced that he
had successfully constructed a series approximation for the motion of the three masses.
Where Newton had aimed to approximate for the perigee of the moon, Clairaut actually
succeeded in doing it. He won the St. Petersburg Academy prize for his work on the
problem in 1752, and in 1759 the value of his approximations was amply demonstrated
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with Halley’s comet passed Earth within a month of what his equations had predicted,
the margin of error he himself had prescribed.

Also in the eighteenth century, Leonhard Euler had focused on the three body problem.
He proposed a simplification of the general problem where the mass of the third body mj3
is taken to be negligible; and also used variation of parameters to study perturbations
of the planetary motion. In fact, the Fuler three body problem is known to be a special
case of the mentioned problem, with the remaining two masses orbiting with circular
trajectories.

Simultaneously, the mathematician Joseph Lagrange made a big step in the progress of
the general three body problem. His major contributions included the reduction of the
problem from a 18-th order differential equation system to a system of order 7, and the
description of two types of particular solutions to the general problem, which we will
state later. It is important to remark his development of Lagrangian Mechanics, which
has been a crucial tool not just to the three body problem in particular but to the general
theory of dynamic systems.

Without knowing Lagrange’s advancements, Carl Jacobi reduced the problem containing
differential equations of order 18 to a sixth order system and Euler’s restricted problem
sixth-ordered system to a fourth-ordered one. A constant of motion was found, known as
Jacobi’s integral, which is the only known conserved quantity of the restricted problem.
George Hill, in 1878, developed a very useful application of this constant of motion,
describing the regions of possible motion for the body of negligible mass, known as Hill’s
regions.

Charles-Eugéne Delaunay was another well-known contributor to the theory of the prob-
lem. Performing a huge number of calculations, after two decades of a hard working,
Delaunay’s methods were published in 1846, but it was not until 1860 and 1867 that a
serious publication including two large volumes of over nine hundred pages each came
out. His method involved complex expressions and a slow convergence, and that’s one of
the reasons why it was impractical at that time. Nevertheless, the theoretical work has
been well-regarded and highly influential in a large variety of fields, from lunar theory to
quantum theory.

Henri Poincaré marked the end of the classical period of work on the three body problem.
King Oscar II of Sweden, in the late 19th century, stated the problem as follows, and
offered a price for solving the N-body problem, which is the problem with N rather
than three masses, on the advice of Gosta Mittag-Leffler, Karl Weierstrass and Charles
Hermite:

“Given a system of arbitrary many mass points that attract each
other according to Newton’s law, under the assumption that no two
points collide, try to find a representation of the coordinates of each
point as a series in a variable that is some known function of time
and for all of whose values the series converges uniformly”.
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Poincaré’s work was so progressive and important that although he did not solve the
problem, he won the price regardless. A mathematical error was found for N = 3 in his
initial submission, that’s why he destroyed the original paper and published a corrected
paper which rectified the mistake. This new paper contained several ideas which would
open a new approach to the problem and would lead to the development of the theory of
mathematical chaos. Poincaré went to invent new mathematical methods that produced
the modern field of differential geometry and topology in order to answer the stability
question using geometry rather than analytic methods.

Poincaré’s ideas were so influential that his foundations caused a pronounced progress
in the 20th century on many different fronts. Solutions with power series were found by
Sundman in 1912 and by Qiudong Wang in 1991 for N = 3 and for N bodies respec-
tively. However, in both cases, the series constructed converged so slowly that they were
essentially useless in practice.

As no analytical solutions were found, simplified versions of the three body problem were
analysed. Different approaches began to take form, for instance the Copenhagen prob-
lem, which assumes the masses of the two other bodies to be equal. Thanks to Poincaré’s
demonstration that the system is chaotic, the possibility of systematically analysing orbits
based on statistical distributions was brought up. Mathematicians Valtonen and Kart-
tunen looked at the problem from the statistical point of view, analysing the scattering of
the escape orbits, i.e. one mass leaving the two other bodies permanently, and the other
two forming a binary system.

Hénon’s contribution to the restricted three body problem consisted on classifying the
possible motions in what he called families of orbits by perturbing the mass of one of the
bodies taking that the parameter p = 0, which was an idea that Poincaré had already
explored (see [3]).

3.2 Formal Approach

Naturally following from the two-body problem, first solved by Newton in his Principia,
the three-body problem is a classical astronomical problem. Many mathematicians and
scientists have focused on its general statement, but despite centuries of exploration, there
is no solution to the three-body problem, as there are no coordinate transformations that
can simplify the problem. Unlike the two-body problem or the restricted three-body
problem, which will be introduced in the next section, the full three-body problem has
no analytical solution (see [18]). It can be stated as follows:

“Gven at any time the positions and velocities of three massive par-
ticles moving under their mutual gravitational force, the masses also
being known, calculate their position and velocities for any other
time”.

Let’s consider three bodies with vector positions 77, 75 and 73 and masses mq, my and msg.
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3.2. FORMAL APPROACH

As the three-body problem is set in an inertial reference frame, we can apply equations
1.7, 1.9 and 1.10. Under the same hypothesis that we mentioned in the two-body problem,
i.e. that the gravitational force is the only force interacting between the bodies and that
the bodies are symmetrically spherical, we get:

- Gmymo ., Gmyms ,,
e A R T EAE I
- Gmime Gmaoms
. Ly Gmams Lo 3.1
mafe = e R T T R TR ) (3.1
N Gm1m3 (_, _,) Gm2m3 (—» —»)
Mg = — o (g — 7)) — oo (g — 7).
S T Eh N A T

The three punctual particles are shown at Figure 3.1 with their respective masses, their
position vectors and the attractive forces acting between them:

)

s

Figure 3.1: 3-D sheme of the three-body problem.

As we did in the previous chapter, some observations can be extracted from the system
of equations

1. It’s an autonomous system: the position, velocity and acceleration vectors are
time-dependent, but the system does not depend explicitly on the independent
variable (the time).
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2. We have 3 equations, each of them three-dimensional, and each of them of second
order. Hence, we have 18 unknowns.

It has been clear that it does not exist a general solution for the three-body problem,
but despite of this fact, some particular solutions have been worked out. The ones that
give periodic solutions give rise to a particular dynamic system. This is a good point to
mention Poincaré’s famous dictuum:

“..what makes these (periodic) solutions so precious to us, is that
they are, so to say, the only opening through which we can try to

penetrate in a place which, up to now, was supposed to be inacces-
sible”.

These periodic solutions are classified in three big families:

1. The first family of analytical solutions dates back to the eighteenth century, and is
called the Lagrange-Euler one. It has been supplemented by one recent orbit due
to C. Moore.

2. Secondly we have the Broucke-Henon-Hadjidemetriou family, dating to the mid-
1970s with periodic rediscoveries of certain members of this family.

3. And finally the Figure-8 family, discovered by Moore in 1993, rediscovered in 2000,
and extended to the rotating case.

S Nee

Figure 3.2: Two solutions for the 3BP when the three bodies have equal mass.

3.3 The restricted problem

In the last section we made the observation that the system of equations (3.1) contains
18 unknowns. It is also known that there are 10 constants of motion (6 from the center
of mass, 1 of the energy and 3 from the angular momentum). In spite of this fact, there
are still 8 unknowns remaining, so a number of simplifications are made.
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3.3. THE RESTRICTED PROBLEM

The first and most prominent simplification is that we will make the mass of the third
body mg3 tend to zero, so that it is negligible. So with this restriction, simplifying the
system (3.1) we obtain:

EYRLCLL BSEA
o m—-ApEtt
- Gml o o
_ . 3.2
) HT—_»Q _7—,»1H3(r2 Tl)? ( )
- Gml (_, _,> sz (_, ﬁ)
rs = —————=(r3 —711) — —5——=5 (3 — 72).
N A R A T

In this way, the third body has no influence on the movement of the other two bodies,
which we will now call primary bodies, and so, it is only necessary to study how this
movement will influence the one of the body with an infinitesimal mass. This simplified
system is called the restricted three-body problem, and was proposed by Euler. From now
on, we will focus on the planar circular restricted three-body problem (R3BP), that’s why
we will make two more suppositions:

1. The movement of both primary bodies is circular.

2. The movement of the third body is produced in the same plane that contains the
primaries.

In order to make notation easier and without losing generality, we will introduce the
following simplifications:

& M1+ Mo = 1.
[ H?z'l—f)g”:l
e We set the origin at the centre of mass, and define the mass parameter pu = ms.

Under these simplifications we get that the period of the orbit of the primary bodies is
27, and that the vector positions of the primaries follow the following equations:

™ = p(cost,sint); (3:3)
ry = (= 1)(cost,sint). |

We will take the new coordinates (Z, 7) so that it is a simpler system, as it doesn’t depend
explicitly of ¢ (see Figure 3.3), defined as:
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T\ _  (cost —sint) [z
) \sint cost y)

The primaries with masses 1 — p and p are at rest and located at the points (i, 0) and
(1 — 1,0) respectively.

T S

S \

(gecost, usint)
\ \

o

N
NS
/
AN\ _
((pn=1) cost, (. —|1)sint)

SN

Figure 3.3: Positions of the primaries in the actual reference frame (represented in
green); versus their positions in a new one (labelled in blue).

In order to clarify the notation we will change the name of the new variables (Z, §) to (x, y).
We can make some observations from the new coordinates. (1)A clear disadvantage is
that this new reference frame that has been set is not inertial, so Newton’s Laws cannot
be applied. (2) Nevertheless, it has the advantage that it is still an autonomous system
in which the following equations describe the movement of the body with negligible mass
(see [16]):

& =2y = Doz, y) ;

3.4
where:
1 l—p p 1
Q = —(2? 2 — + — 4+ —u(l — u); 3.5

with di = /(z —p)?+9y? and dy = /(z —pu+1)2+y2 Where d; and dy are the
distances from the first primary to the third body and from the second primary to the
third body respectively.
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3.4. EQUILIBRIUM POINTS

The equations of motion for the third body (3.4) has a constant of motion, named Jacobi’s
integral, which is given by:

C =20(z,y) — i* — 3°. (3.6)

3.4 Equilibrium points

Imagine two primaries orbiting one around another. ¢ These equilibrium points can be
separated in two groups:

1. Triangular points

The equilibrium points Ly and Ls are called triangular points. They lie at equal
distance from the two primaries, and each of them forms the third vertex of an
equilateral triangle with the primaries (see the yellow points represented at Figure
?7). These points are stable, and at that place the gravity forces exerted by the
primaries cancels with the centrifugal force, which is directed away of the centre of
mass, also called the barycentre of the system.

As we said, Ly is situated at the third vertex of an equilateral triangle, with the two
primaries forming the other vertices. We can easily obtain L by a mirror reflection
of L4 about the x-axis. The fourth and fifth Lagrange points have coordinates:

Ly: (u—é?);
Ly : (u—%,—?).

Ly, Ly and L3 are called the colinear equilibrium points, as they are located on the
r-axis (see the magenta points represented at Figure ??). Unlike the triangular
ones, they're not stable. In order to determine the equations, we have to remember
the Jacobian’s constant, see (3.6). As Li, Ly and Ls lie in a straight line on the
z-axis, y = 0, and as they are equilibrium points, i.e. they are if we put a third
body of negligible mass, from it we would see that the points are at rest, =,y = 0.
Hence, letting ' (z,y = 0) = Q'(z), we want the points that follow this form:

(3.7)

2. Collinear points M

() = 0. (3.8)

Newton’s method can be used to solve equation (3.8). The Newton-Raphson Method
or Newton’s Method is a powerful technique to find zeros of nonlinear equations
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CHAPTER 3. THE RESTRICTED THREE-BODY PROBLEM

numerically (see [8]). It is based on the simple idea of linear approximation, and it
consists of an iterative procedure.

Figure 3.4: Graphical representation of Newton’s Method.

Let the function f : R — R be a differential function and have a zero in s (i.e.
f(s) = 0). We start with an initial estimate z( of s, called a “guess”. Newton’s
method tends to converge if our initial estimate is close to s, and will have a low
probability to converge if it is not. If x, is the current estimate, then the next
estimate x,41 is given by:

— f(xn>
Tpil = Ty Pl (3.9)

Tn

We can use the geometric interpretation to explain the method. Figure 3.4 repre-
sents two iterations of Newton’s Method to find a zero x4 of the function f(z).

In our problem, we want to calculate the zeros of Q'(z), so we will change f(z) in
equation 3.9 to '(x) and f'(x) to Q"(z), where (see [16]):

V) = — (1—p)(z —S/A;) B u(x—u+1)3/2
((z = n)?) (x—p+1)?)
2(1 — p) 2p

(w—w2)*? (@ —p+1)2)>?

(3.10)
Q"(z)=1+

The result for the x-coordinate location of the three collinear points depending on the
mass parameter p is represented in Figure 3.5. The code that has been implemented in
order to solve the problem is shown in section A.2.
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3.5. HILL REGION

1.5 T T T T

05
0

-0.5 |

_1 5 1 1 1 1

Figure 3.5: Variation of the z-coordinate of the collinear equilibrium points with respect
to the mass parameter pu.

In Figure 3.5:

e The grey line represents the movement for the second primary.

The black line represents the path of the first primary.

The pink line is for the equilibrium point L;.

The blue one for L,.

e The line sketches the movement of Ls.

3.5 Hill Region

We defined the Jacobi’s constant ¢ at equation (3.6) (see [20]). From this equation, we
can set the inequality 2Q(x,y) > C, which places a constraint on the variable position of
x for each value of C, and if x satisfies this condition, then a solution of the restricted
problem through the point x for that concrete value of the constant can be found. The
associated Hill region can be defined as:
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(3.11)

Figure 3.6: Plot of the Hill Region with different Jacobi constants for g = 0.1.

Lemma 3.5.1. The Hill Region, defined by equation (3.11), gives the enclosed area where
the orbits of the third body can live.

Proof. We consider the inequality 2Q(x,y) > C. When 2Q(z,y) = C, we are at the
border of the Hill region, and this equality can only be satisfied if the velocity of the third
body is zero. Therefore, the Hill region is a sector in space x,y where movement can take
place: all the orbits of the third body satisfy the inequality stated at the beginning of
the paragraph. If this last statement weren’t true, i.e. the orbits of the third body could
live at a region out of the area given by the inequality, it would mean that the modulus
of the velocity of the third body is negative, and that is not possible. O

I have created a program shown at appendix A.3 in order to depict the Hill Region with
four different Jacobi Constants C' = 3.1, 3.4, 3.6, 3.8 respectively (see Figure 3.6 from left
to right and from the top to the bottom). As it can be seen from the cited figure, the
higher the Jacobi Constant, the smaller the Hill Region, as the third body will only be
able to be located in regions of higher energy.
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Chapter 4

Numerical Methods for ODEs

As it was said in section 1.5, given a differential equation, the solution of such problems
in analytical form can be found in very limited cases, only for some rather special right-
hand side function. In this chapter we will study several methods which consist of a finite
number of steps, including one-step and multistep methods, in which we will not look for
a closed-form expression for the desired solution of an ODE but for an approximation to
this unknown solution at certain points, where the solution exists, by means of a numerical
analysis. The aim in this chapter is to define these numerical methods, i.e. to give the
description of these algorithms. We will only deal with explicit numerical methods, i.e.
methods that calculate the state of a system at a later time from the state of the system at
the current time. For having clear the explained information and additional information,
see [6] [11].

Our objective is to find the numerical solution of the problem

Ox
== f(t,z),t €[0,T]; (4.1)
x(0) = o,

where 7' > 0 is s.t. the IVP (4.1) a unique solution on the time interval [0, T'] exists. This
means that we want an approximation of the solution of this problem at a finite number
of points in the time interval, denoted by {0 =to < t; < ... <t, =T}.

This chapter will help us to choose the best method, that is, the one whose error is the
lowest. Therefore, every time that we introduce a numerical method to solve ODEs, we
will expose its error, and we will refer to it as the order of that particular method. In
numerical analysis, the order of accuracy quantifies how good a numerical approximation
of the numerical solution of a differential equation converges to its solution (see [2, ch.
4]). A numerical solution to a differential equation is said to be n-th order accurate if
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4.1. DIFFERENTIATION OF FUNCTIONS

e(h) = O(h™), (4.2)

where
e ¢ is the global error, i.e. accumulation of the local error (the error caused during a
single iteration) over all of the iterations.
e 1 is the step-size (the increment of time).
e O(h") is written in big O notation, and n is the order of the numerical method.
Nevertheless, before starting with the description and some examples of these methods, a
section is going to be introduced whose aim is to give a first approach to the differentiation

of functions between euclidean spaces of finite dimension, as a good number of the methods
that are going to be explained require these calculations.

4.1 Differentiation of functions

The concept of differential has its origins in the calculation of the planes tangent to a
surface. In 1911, the french mathematician M. Fréchet defined it as Given the function
f:R — R, f is differentiable at the point a when there exists the

lim
h—0

fla+h) = f(a)
- . (4.3)

This limit is represented as f’(a), and is named the derivative of f at point a.

The geometrical meaning of the existence of the derivative at point a means that there
exists a tangent line at the point (a, f(a)) to the curve represented by the graph of f, and
the slope of the mentioned tangent line is f’(a). Hence, the equation of the tangent line
is given by:

y = fla)+ f'(a)(z — a).

Now, we want to extend the previous results to functions f : 2 C R® — R. Given a
function f(¥), a point @ = (ay, ..., a,), and a director vector v = (vy, ..., v,), we define the
directional derivative of f in @ and the direction v as:
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poon e fl@+ R V) — f(a)
fv(a) _}L% h
— lim flag+h- vy, a, +h-v,) — flag,...,an)
h—0 h

The partial derivative of a function f in a point @ = (ay, ..., a,) with respect to the i"
component is the directional derivative at the point and in the direction of the vector
& = (0,...,0,10,0...,0). It is denoted by:

The gradient vector of a function f(Z),z € R"™ is the vector formed by all the partial
derivatives (see [12]):

V(F) = (S—i(f),...,gi@)

4.2 One-Step Methods

The theorems and definitions considered in section 1.5 inform us about the existence and
uniqueness of the solution of the IVP or Cauchy problem, but when we ask ourselves how
to find its solution, there is no answer to the question.

This section focuses on one-step methods, i.e. those methods in which the value of the
approximated solution to the problem (4.1) at a given ¢, is defined only by the approxi-
mation at the time ¢,_;.

4.2.1 Euler’s method

A first numerical method for the solution of the initial value problem defined at equation
(4.1) can be worked out by the following observation: as we want that our solution is
of the form v/(t) = f(t,y(t)) with ¢t € [0,T], f(t,y(t)) is the slope of the desired exact
solution y(t), then:

L Y (0!

y(t+h) = y(t) + hf(t,y(t)).
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We chose a steplenght h # 0, and starting with the given initial values (to, y(o)), we obtain
at equidistant points (given that h is constant) t; = to + th,7 = 1,...,n approximations
¥; to the values y; = y(t;) of the exact solution y(x) follow the subsequent iterative
algorithm:

o = Yo;
forv=0,....,n:
Vi1 =i+ hf(ts, vi),
tiy1 =t; + h.

It is important to remark that Euler’s method is an algorithm of order 1, that is, e o O(h).

4.2.2 Taylor’s method

FEuler’s method can be sharpened and expanded into what we call Taylor’s method. From
the solution y(¢) of the Cauchy problem (see 1.5.3), which satisfies that:

y'(t) = f(t,y(t),t €[0,T7, (4.4)

we assume that f has continuous partial derivatives of any order. Differentiating equation
4.4, using the chain rule, we get the following relation at some point ¢ € [0, T:

y'(t) = f(ty(D),
y'(t) = At y(®) + Lot y(D)y' (1),
Loyt

”’(t) = fu(t,y(®) + fra(t, y(®))

(
Y(0) + faa(ty(D)) (Y (1) + fo(, y(E)y" (D).

All these derivatives can be compounded exactly, as y(f) is a known value. Higher order
derivatives can be computed in the same way, but their corresponding formulae become
increasingly complicated.

Let t > ¢ such that [f,#] C [0,T]. Then, inside the domain of convergence, the following
relation holds:

o0 k, ~
Zyk(f (t — i) (4.5)

k=0

As it is not possible to compute partial derivatives of any order of the function f, and to
compute the exact value of the solution at some fixed point, equation (4.5) requires the
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summation of an infinite series (which is typically not possible), the computation of the
exact value y(t) is not possible, and therefore we aim to define only its approximation.
Taylor’s method is an algorithm of second order, hence: & oc O(h?).

4.3 Multistep Methods

While in the previous section we considered such numerical methods in which the new
value of the approximation solution is only defined by the previous point; in the se-
quel, the new value of the approximation is defined by several previous approximations.
These methods in which the unknown value y,,, is in function of some previous values
Ynak—1>Ynik—2, -, Yn- In this case, we obtain a method of k steps and, in particular, if
k =1, we get a one-step method.

Formally, in a multistep method for the solution of the IVP ((1.35)) one computes a value
apir Of y(zpe,) from 7 > 2 given approximate values ay of y(zx),k =n,n+1,...,7 — 1,
at equidistant points xp = xg + kh.

Definition: Let ag,aq,...,a,, and by, by, ..., b, be given numbers. The iteration of the
form

aolYi + arYi-1 + .. + @mYicm = hlbofi Fo1fic1 + . F b ficm], i=m,m 41,5 (4.6)
is called a linear m-step method.

In order to initiate multistep methods, the r starting values ay, ..., a,_; must be our
disposal, and thus, we can obtain them, for example, with the aid of a one-step method.

4.3.1 Adams-Bashforth methods

Adams methods are obtained when in the general formula (4.6) the parameters a; are
defined as:

CL():l,
a1:—1,
Ay =Qa3 = ... = Gy, =0

The parameters by, by, ..., b, are free parameters. The Adams method with by = 0 is called
Adams-Bashforth method, and is going to be studied in this subsection.

In 1833, Bashforth and Adams firstly proposed the idea of extending Euler’s method.
They brought up the idea of allowing the approximate solution at a point to depend on
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the solution values and the derivative values not at the immediate previous step but at
several previous step values so that the method gives a better approximation solution,
and moreover, they wanted to avoid the use of derivatives.

Particularly, we will use Adams-Bashforth 3, which uses the three previous points in
order to calculate the following approximation solution. The approximation solution y;;
is given by:

h
Yir1 = Vi + E[23fi —16f;_1 + 5fi—a], (4.7)

where f(y:) = f(y).

The Adam-Bashforth 3 method is an algorithm of order three, that is € oc O(h?®), which
is much lower than the method studied in the first section (see [8]).

4.4 Runge Kutta Methods

In 1895, Runge, came up with the idea of generalising the Euler method by allowing for
a number of evaluations of the derivative to take place in a step. Further contributions
were proposed by Kutta in 1901, and the latter completely characterised the set of the
called the called Runge-Kutta methods.

This is one of the methods most thoroughly used, and is particularly appropriate for
functions whose calculation of derivatives of greater order is complex. It can be used for
equations of arbitrary order transforming them in a system of equations of first order.
Nevertheless, its major inconvenient resides in the difficulty of the error estimation. The
method is given by

p
Ynt1 = Yn + N Z bik;, (4.8)
i=1

where:
kp = f(tn + Csh7 Yn + h(aslkl + as2k2 + ...+ as,s—lks—l))

It is convenient to represent the Runge-Kutta methods by a partitioned tableau of the
form:

Which, in extended form, corresponds to:

62



CHAPTER 4. NUMERICAL METHODS FOR ODES

ci | a1 ... Q1p
Cr | Qpp ... Qpp
o b,

where

e The vector c¢ indicates the positions, within the step, of the stage values

e The matrix A indicates the dependence of the stages on the derivatives found at
other stages

e b' is a vector of quadrature weights, showing how the final approximation solution
depends on the derivatives, computed at the various stages.

Since the advancements in digital computers, mathematicians have focused their in-
terest on the called Runge-Kutta methods, and a large number of research workers
have contributed to the development of particular methods. One of them is the called
Dormand—Prince method, and it is the one that we will use and program. The Dor-
mand—Prince method has seven stages or function evaluations, and it calculates both
fourth and fifth order accurate solutions. The error of the algorithm is taken to be the
difference between the two solutions.

Dormand-Prince method chooses some specific conditions [7], for example uses the coef-
ficients a, b, ¢ that make the error of the solution is of fifth order. The Butcher tableau
for the method is:

0
1 1
5 5
3 3 9
10 40 10
4| a4 56 32
5 15 15 9
8 | 19372 25360 64448 212
9 | 6561 2187 6561 729
1 | 9T 355 46732 49 _ 5103
3168 33 5247 176 18656
1 35 0 500 125 _ 2187 11
384 1113 192 6784 84
35 0 500 125 _ 2187 1
384 1113 192 6784 84
5179 0 7571 393 92097 187 1
57600 16695 640 339200 2100 40

Table 4.1: The Butcher tableau for Dormand&Prince method.

In the section of b coefficients, the first row gives the fifth-order accurate solution and the
second row gives the fourth-order accurate solution. Dormandé Prince method’s code,
programmed by myself, can be seen at the appendix A.7.
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4.5 Comparative analysis of the methods

Keeping in mind the algorithms stated in the previous sections from this chapter, we will
compare them in order to ratify the theoretical results, which say that Runge-Kutta 45
method approximates the best the solution of an equation given that it has the greater
order.

We known that the solution of the pendulum system (1.33) taking a = 1 and the time-
interval being ¢ € [0, 7], is the following:

> T T T e T

4 |

_5 1 1 1 | 1 1 1
Figure 4.1: Solution to the Pendulum System integrated with Dormand& Prince method.

Euler and Taylor 2 are methods that have order 1 and 2 respectively; that means that
in order to acquire an error under the imposed tolerance a huge number of steps are
required. In Figure 4.2, we can observe the solution of the pendulum system (1.33) has
been approximated with these two methods. Remembering the problem:

0"(t) = —sin 6

6(0) =1

6'(0) =
te0,7]

The solution obtained with the given initial conditions and the size-step control for both
methods A,y = 0.9 A - %, where TOL is the tolerance and ¢ the local error, has been:

From Figure 4.2 we can make the following comments. A lot of integrations are needed
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Figure 4.2: Comparison between the solution of the pendulum system with Euler and
Taylor methods, using a tolerance of 1073,

so that the local error is lower than the tolerance. This is the main drawback of the
algorithms. Moreover, as Euler method requires more steps than Taylor’s method, the
local error keeps accumulating giving a remarkable global error. The C++ code of both
methods can be seen in A.4 and A.5.

We have also found the solution of the pendulum equation with Adams-Bashforth 3
method:

0.8 |-

0.6 -

04

02 |

-0.2

0.4 |

-0.6 -

-0.8 -

Figure 4.3: Adams-Bashforth approximate solutions of the Pendulum System

As we can observe, several solutions for distinct values of h are drawn at Figure 4.3.
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This is because the step-size is constant for each solution, as it is difficult to implement
a step-size control in multistep methods. This last comment is the main drawback of the
algorithm. We could implement a step-size control, but we would need to solve a linear
system of equations, and this is work that, using other methods, can be saved. The C+ +
program of Adams-Bashforth method can be seen in A.6.

Also from Figure 4.3, it can be observed that the bigger the h, the greater the error is
(or, in other words, the worse the approximation solution is). This makes sense, as the
error depends proportionally on the size-step.

With Runge-Kutta 45 method, given that the size-step control is hy,e, = 0.9h(%)1/6,
where TOL is the tolerance and ¢ is the local error, the solution is the following;:

T
RK45 ———
Real Solution -------

0.2 |

-0.2 |

.04 |

-0.6 |

-0.8

-1.5 -1 -0.5 0 0.5 1 15

Figure 4.4: Approximation solution to the Pendulum System with Dormand&Prince
method.

Dormand&Prince method approximates perfectly the solution with only eight steps. A
big size-step h still gives an error under the imposed tolerance 1073, so it is a very good
method.

A Figure showing all the methods in one has been created in order to do a final comparison
between them with the following system:

i =—x—y+a(@®+1y?)
y=z—y+y@®+y’)
z(0)=1

y(0)=0

(4.9)

It is necessary to remark that we have taken h = 0.02 and the time interval is ¢ € [0, 7]:

66



CHAPTER 4. NUMERICAL METHODS FOR ODES

T T T T
Real Solution
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Taylor 2
Adams-Bashforth 3
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Figure 4.5: Final comparison between all the studied methods with a fixed step-size.

From Figure 4.5 it can be clearly seen that the only integration method that gives a
good approximation solution is Runge-Kutta 45. This result coincides with the theoret-
ical result, which said that the higher the order of a numerical method, the better the
approximation solution is.

Before continuing, we will try to integrate the famous Lorenz system with our Runge-
Kutta method:

RK45

50
30
10

Figure 4.6: Runge-Kutta’s 45 approximated solution to the well-known Lorenz system.
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Chapter 5

Objective Ly

5.1 About L, in the Earth-Moon system

Remembering some concepts explained at section 3.4, talking about the Earth-Moon
system, L, is an equilibrium point (i.e. a region where the gravitational forces cancel out
with the centrifugal force) that forms the third vertex of an equilateral triangle with the
primaries (the Earth and the Moon).

Studies showed that there were bodies located at L, in many systems. For example, in the
Sun-Jupiter system, a huge number of asteroids (more than 2000) called Trojans, orbit
near its triangular equilibrium points. Another example can be found in the Sun-Saturn
system. One of Saturn’s moon called Dione is located at L4, and in the Saturn-Dione
system, a satellite called Helena is found at its L4 equilibrium point.

Nevertheless, no objects were found near this point (and nor near Ls) in the Earth-Moon
system. Astronomers decided to create a simulation including hypothetical small particles
near L, and Ls to understand this absence. Their only explanation for this observed
curious fact was that additional gravitational forces of more distant bodies, such as the
Sun and the other planets of the Solar System made these regions unstable. They divided
the experiment in two simulations, during which they tested Trojan particles that were
initially located near the L4 Earth-Moon point in either the Earth-Moon-Sun system, and
a system including all 8 planets of the Solar System with the Moon and the Sun.

The results extracted from the first simulation showed that, in the Earth-Moon system,
taking into account the gravity of the Sun, the "Trojans” artificially located at L4 lasted
more than 10° years. On the other hand, a different result was obtained in the second
simulation. When the other 7 planets were added, no particles survived beyond a few
million years. This fact can be explained because, although the force of gravity exerted by
the other planets on the Earth and on the Moon is much smaller than the Sun’s gravity,
they change the eccentricity of the Earth’s orbit around the Sun.
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5.2 Objective

The aim of this Chapter is to determine the regions in space where a satellite can be
found if we want it to pass through the equilibrium point L4 of the Earth and Moon’s
orbits, i.e. we want to solve the R3BP 3.3 where the two primaries are the Earth and the
Moon and the body of infinitesimal mass is our satellite. The R3BP gives us the system
of differential equations (3.4) that describes the movement of the third body, so we have
to solve an IVP 1.5.3 using the numerical method of integration Dormand& Prince 4.4.

Firstly we want our data (masses of the primaries, distances and radi) to follow the
simplifications stated at section 3.3. Knowing that, in S.I. units

Earth | Moon
Distance 384400 km (d2)
Mass 5.972 - 10%* kg (my) | 7.348 - 10* kg (my)
Radius | 6371 km (rq) 1737 km (rg)

Table 5.1: Data of the Earth and the Moon

Now, using the values exposed in table 5.1 we get the following data in our simplifications:

L1022
_ _ 7.348 - 10 — 0.01215:
my +mge  5.972-10%* + 7.348 - 1022
1 6371
d=—= = 0.01657.
dio 384400

where p is the mass parameter and d is the distance between the point from which we
launch the satellite and the centre of the first primary (the Earth).

5.3 Method and procedure

In this section it is going to be explained the technique that will be applied concerning
how are we planning to calculate the regions where a third body can be found with the
condition that we want it to pass through L, of the Earth-Moon system.

In the first place have to chose a point on the Earth’s surface, i.e. at a distance of 0.01657
from the centre of our planet. Once the launching point is set, we have to calculate the
modulus of the limiting velocity that makes our satellite pass through L, between the
region of angles that is going to be determined in each specific case. Then, we do multiple
launches of the satellite with this velocity (in modulus), and calculate which is the angle
that makes the distance between our satellite and L, minimal. After saving this angle,
the number of that particular vector and the time of integration (which is the time that it
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takes our satellite launched from the Earth’s surface to the triangular point); we increase
the modulus of the velocity and perform in a parallel way until with 100 different initial
velocities.

With the data assembled, taking the two limiting trajectories that go from Earth to L4, we
will have determined the region that we wanted, i.e. we will have reached our objective.

5.4 Results

In this section I will show the images and explain the program that I have developed in
order to sketch the regions in space where a third body can be found if we throw it from
a point on the surface of Earth (actually I have done the experiment with three different
launching points) to the equilibrium point Ly.

5.4.1 My C++ programs

Having the objective of my work in mind, I have programmed two codes which are shown
at appendix A.8 and A.9 and will be explained in the following lines in order to run my
simulation.

In the first program, firstly I have created a .dat file in which we type the initial conditions
of the satellite. The file is read by the program and then it begins to proceed with the
algorithm. The mentioned .dat file contains the following information:

1. The initial launching position of the satellite.

2. to, which is the initial time of the launching.

3. The final time of integration, common for all the different iterations.

4. The initial angle at the launching point from which we fire off the satellite.

5. The modulus of its initial velocity.

This file is created in order to save work and time having only to modify the numbers
on it in case we want to change the launching point instead of recompiling the whole
program.

Once the program reads the .dat file, given a maximum and a minimum angle, we subdi-
vide the segment formed by both maximum and minimum angles in 21 equidistant points,
i.e. we launch 21 vectors, integrate the system of equations (3.4) with Dormand& Prince
method for each launch and save the number of the vector such that the distance between
the approximation solution and the point L, is minimum. Then, we save the vector on
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the right and the one on the left of the selected vector. The inclination of these vectors
will give us two new minimum and maximum angles, and we will use them in the next
iteration of the algorithm. Figure 5.1 shows this process with the first 2 iterations and 7
vectors on each one.

1)

Figure 5.1: Illustrative representation of the first two iterations of the part of code A.8.

Where:

e — are all the launches with the same velocity in modulus and different angles.

e — represent the selected vectors on each iteration, i.e. the ones that make the
distance between the equilibrium point and my approximation solution minimum.

° are the limit vectors that define the region where we are going to fire off our
satellite in the next iteration.

After these steps, we will have a good approximation for the vector whose solution passes
through L, for that particular velocity. Finally, we repeat this iterative process for 99
more different velocities. Before changing the modulus of the initial velocity, I open
another .dat file, where the following elements are saved:

1. The modulus of the initial velocity vy, which I have selected in order that the satellite
goes through Ly.

2. The angle that makes the distance from my approximation solution to the equilib-
rium point minimum for each velocity.

3. The time of integration required until the satellite reaches L.
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The second program reads the mentioned file and repeats the integrations of the function,
saving all the necessary data in order to be able to plot the different trajectories of my
satellite with different velocities that go through L4. The difference between the first and
the second program is that in the second one, the time of integration is particular for
each velocity, it is the one calculated and saved in the first program, so that when I plot
the results, all the fire offs start and and at the same points (start at Earth and arrive at
L4).

5.4.2 P;: 180 degrees with the horizontal

The first point from which we will launch our satellite is obviously located at the surface
of Earth, and makes an angle of 180 degrees with the horizontal. We consider that Earth
has a volume, so the satellite can’t cross the planet during its trajectory to Ls. For that
reason, it is clear that all the possible initial angles 6 of firing off are contained in the
interval 0 € [Z,3Z], as shown at Figure 5.2.

Figure 5.2: Initial setup illustrating the different launching vectors from the point
making 180° with the horizontal.

Many comments can be made from figure 5.2. In the first term, I am going to identify
the different symbols and objects:
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a) The initial position of the satellite is represented by
b) The valid region for firing off the third body is delimited by the green-lined section.
c¢) The different launches are labelled as

d) --- represents the straight-line trajectory that the satellite would follow if it would
have infinite velocity from the centre of Earth.

e) — is the trajectory that would define the satellite if it had infinite velocity form the
launching point.

Analysing the image, it is clear that launching our satellite with infinite velocity, it would
directly go to L4 in a straight line, thus the launching angle would be 120° with respect
to the horizontal. Now, talking about our initial p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>