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Calculation of the valid regions in the R3BP to send a
satellite that goes directly through the equilibrium

point L4 of the Earth-Moon system.
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“The scientist does not study nature because it is
useful to do so. He studies it because he takes plea-
sure in it, and he takes pleasure in it because it is
beautiful. If nature were not beautiful it would not
be worth knowing, and life would not be worth liv-
ing. I am not speaking, of course, of the beauty
which strikes the senses, of the beauty of qualities
and appearances. I am far from despising this, but
it has nothing to do with science. What I mean
is that more intimate beauty which comes from the
harmonious order of its parts, and which a pure
intelligence can grasp.”

Henri Poincaré
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Abstract

In this mathematical essay we investigate and calculate the valid regions in the R3BP
where a satellite sent from different points on the surface of Earth can be found if we
want it to go through the equilibrium point L4 of the Earth-Moon system. A Runge-
Kutta 45 Method called Dormand&Prince has been programmed in order find a numerical
approximation solution to the differential system of equations for the movement of the
third body. We have determined the coordinates of the launching points, the possible
angles, direct angles, and the possible velocities of firing off for our satellite among other
parameters. Furthermore, we have concluded the article by creating some graphs where
the results obtained with the code in order to answer the research question are clearly
stated and commented.

Keywords: Three-body problem, ordinary differential equations, equilibrium
points, numerical integration.
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Introduction

Immensity. That’s all that I felt when looking at the sky last summer. I observed the
Moon and how it changed its position from day to day; I was sure that there was a lot
of mathematics involving this beautiful topic. I can say firmly that curiosity and the
attitude of wanting to know more about planets and orbits, combined with my passion
for mathematics were the principal causes that made me want to develop this work.

Like almost in every assignment or task, my first idea of what I would do was very different
from the final result. My intention was to study the trajectory equation and focus on the
eccentricity of orbits in order to finally explain why does this parameter change as time
passes (talking in a large scale, of course), with Earth as the principal example. While I
was reading books, articles and thesis about the two and three body problems, orbits and
their eccentricity; I discovered the Lagrangian points, particularly L4, which appealed my
attention from the very first moment. In fact, in one of my first researches I found the
system of differential equations for the trajectory of a third body whose solution permits
us to know where it is at a given time, which cannot be solved analytically.

My main objectives in this paper are the following:

1. To explain accurately the mathematical (and physical) background, and to proof a
good number of the formulated propositions.

2. To combine different areas of mathematics and establish bridges between them in
order to give an answer to my research question.

3. To show how that the concepts studied are required and applied on my way to
finding the mentioned solution.

4. The most important and principal objective, to find the solution of my research
question, which can be stated as follows: which are the regions where a satellite
launched from different points on the surface of our planet Earth can be found if
we want it to go through the equilibrium point L4?

Other general objectives are to learn how mathematics can be found in a topic about which
I knew nothing before starting to work with it; and finally to challenge myself program-
ming in C++ and doing some elaborated illustration with GeoGebra [a] and GNUplot [b].
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CONTENTS

In order to accomplish my principal aim, I have divided my work in five chapters. It
is important to remark that I needed a solid physical background that would define the
problem in which I would be working during all the exploration and would give me the
equations that I would be analysing and working with. This is the reason why I have
dedicated two whole chapters to talk about the two-body problem and the three-body
problem, which discuss the dynamics of two and three bodies in space respectively. Added
to that, I felt that previous chapter was necessary in order to explain some concepts about
derivation, integration, a few important laws of physics and some important definitions
so that when explaining the two and three body problem, everything would be clear and
revised previously. As we will see further on, the three-body problem gives us a system
of differential equations that describes the motion of the third body. As I wanted it to
go from Earth to L4, I had to solve this system of differential equation using numerical
integrators, which would give a numerical approximation of the solution. Therefore, I
decided to assign an entire chapter to the explanation of numerical methods to solve
differential equations, and I would chose the one with less error in order to solve the
problem myself.

At this point, I must admit that the first four chapters are only the introduction and the
background of my real work. My objective is accomplished in Chapter 5, where I launch
my satellite from Earth and find the solution of the 3BP during a period of time until it
reaches L4 from three points on the surface of Earth. It is important to remark that the
units that I work with are normalised, and that all the illustrations and programs I have
done them myself, including the cover page and the back cover.

14



Chapter 1

Previous Concepts

1.1 Basic Definitions

The aim of this section is to clarify some physic elements whose definitions I have con-
sidered necessary to introduce. These and other complementary definitions can be found
at [15] [17].

Definition 1.1.1. Reference frame A coordinate system is always introduced in order
to describe physical events that occur in space and time, such as the motion of a body. In
particular, the position of a moving body can be described by space-time events specified
by its space-time coordinates. An observer can be placed at the origin of the coordinate
system, and both the observer and the coordinate system act as a reference frame for
describing the position, velocity, and acceleration of bodies. The choice of the origin,
which as we said is the location of the observer, will determine the position vector of
the body; but the displacement, velocity, and acceleration vectors are independent of the
location of the observer.

Definition 1.1.2. Inertial reference frames If no forces act on an object, any refer-
ence frame for which the acceleration of the object remains zero is an inertial reference
frame.

Definition 1.1.3. Mechanical Energy We define the sum of the kinetic and potential
energies of a system as the mechanical energy of the system:

Emech := K + U, (1.1)

where K includes the kinetic energy, i.e. all the energy due to motion, of all moving
members of the system; and U includes all types of potential energy in the system, i.e.
the energy that an object has due to its position in a force field.

15



1.2. NEWTON’S LAWS

Definition 1.1.4. Linear momentum The linear momentum of a particle or an object
that can be modeled as a particle of mass m moving with a velocity ~v is defined to be the
product of the mass and velocity of the particle:

~p = m~v. (1.2)

Definition 1.1.5. Angular Momentum The instantaneous angular momentum ~L of
a particle relative to an axis through the origin O is defined by the cross product of the
particle’s instantaneous position vector ~r and its instantaneous linear momentum ~p:

~L := ~r × ~p. (1.3)

Definition 1.1.6. Periapsis It is the closest point a second body comes to the first one
during an orbit. If the body of greater mass is the Sun, the point where the orbiting body
is nearest to it is called the perihelion. The contrary case, i.e. the point where an orbiting
body is furthest from the body with greater mass, is called apoapsis.

Definition 1.1.7. Centre of mass We consider a system consisting of two particles
with masses m1 and m2. The position of the center of mass of the system can be described
as being the average position of the system’s mass. It is located somewhere on the line
that goes through the two particles, and is obviously closer to the particle having larger
mass.

The x-coordinate of the centre of mass of the pair of particles is given by:

xCM =
m1x1 +m2x2
m1 +m2

. (1.4)

Extending this concept to a system of n particles with masses mi in three dimensions, the
x coordinate of the centre of mass of n particles is defined to be:

xCM =
m1x1 +m2x2 +m3x3 + ...+mnxn

m1 +m2 +m3 +mn

=

∑
imixi∑
imi

=

∑
imixi
M

=
1

M

∑
i

mixi. (1.5)

1.2 Newton’s Laws

Isaac Newton stated that “An impressed force is an action exerted upon a body, in order
to change its state, either of rest, or of uniform motion in a right line”. Galileo Galilei
recognised the idea that force produces motion many centuries before Newton’s birth,
but this last scientist extended the concept of force to any circumstance that produces
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CHAPTER 1. PREVIOUS CONCEPTS

acceleration. All this knowledge can be summed up in his three laws of motion. Extended
information can be found at [15, Ch.5,].

17



1.2. NEWTON’S LAWS

Newton’s First Law of Motion: The Law of Inertia

In the absence of external forces and when viewed from an inertial reference frame, an
object at rest remains at rest and an object in motion continues in motion with a constant
velocity, that is, with a constant speed in a straight line (linear motion).

Figure 1.1: Newton’s First
Law.

Newton’s first law makes no distinction between an object
at rest and an object moving with constant (nonzero) veloc-
ity. Whether an object remains at rest or remains moving
with constant velocity depends on the reference frame in
which the object is observed. Suppose you are on a train
that is going along a straight path and at constant altitude.
You carefully place a tennis ball on your seat tray (which
is horizontal). Relative to the plane, the tennis ball will
remain at rest as long as the train continues to move at
constant velocity relative to the ground. Relative to the ground, the tennis ball remains
moving on a straight line with the same velocity as the plane.

Now, suppose that the train suddenly accelerates forward (relative to the ground). You
will then observe that the tennis ball on your tray starts to roll toward the rear of the
train, accelerating (relative to the plane) even though there is no horizontal force acting
on it. In this accelerating reference frame of the plane, Newton’s first-law statement does
not apply. Newton’s fist-law statement applies only in reference frames known as inertial
reference frames.

Newton’s Second Law of Motion

Figure 1.2: Newton’s Second
Law.

When viewed from an inertial reference frame, the accel-
eration of an object is directly proportional to the net
force acting on it and the reciprocal of the mass of the
object is the constant of proportionality. Thus,

~a =
~Fnet
m

where ~Fnet =
∑
i

~Fi. (1.6)

Isolating ~Fnet we obtain the following mathematical statement:

~Fnet = m~a. (1.7)

In both the textual and mathematical statements of Newton’s second law, we have in-
dicated that the acceleration is due to the net force ~Fnet acting on an object. The net
force on an object is the vector sum of all forces acting on the object. Equation (1.7) is
a vector expression and hence is equivalent to three component equations:

Fnet,x = max, Fnet,y = may, Fnet,z = maz. (1.8)

18



CHAPTER 1. PREVIOUS CONCEPTS

Newton’s Third Law of Motion

When two bodies interact, the force ~FBA exerted by object B on object A is equal in
magnitude and opposite in direction to the force ~FAB exerted by object A on object B.
Thus,

~FBA = −~FAB. (1.9)

Figure 1.3: Newton’s Third
Law.

Newton’s third law describes an important property
of forces: forces always occur in pairs. If a force is
exerted on some object A, there must be another object
B exerting the force. This law states that the forces are
equal in magnitude and opposite in direction. That is,
if object A exerts a force on object B, then B exerts an
equally strong but oppositely directed force on A.

Each pair of forces is called a Newton’s third-law (N3L)
pair. It is common to refer to one force in the pair as an action and the other as a
reaction. This terminology is unfortunate because it sounds like one force “reacts”to the
other, which is not the case. The two forces occur simultaneously. Either can be called
the action and the other the reaction. If we refer to a force acting on a particular object
as an action force, then the corresponding reaction force must act on a different object.

Newton’s Law of Universal Gravitation

It is a well-known legend that Isaac Newton was having a nap under a tree when suddenly
an apple fell from the tree and smacked on his head. From this observation, he imagined
that perhaps all objects in the Universe are attracted to each other as the apple was
attracted to the Earth. Analysing astronomical data on the motion of the Moon around
the Earth, Newton stated that the force law governing the motion of planets was the same
as the force law that attracted a falling apple to the Earth.

Newton’s Law of Universal Gravitation asserts that

every particle in the Universe attracts every other particle with a
force that is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them.

Putting into a formula this information, he stated that the magnitude of the gravitational
force Fg is:

Fg = G
m1m2

r2
, (1.10)

where
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1.3. CONIC SECTIONS

• m1 and m2 the masses of the two particles,

• r is the distance between both particles,

• G is the universal gravitational constant, whose value in SI units, measured by
Henry Cavendish in 1798, (G = 6.674 · 10−11 N · m2 / kg2).

1.3 Conic Sections

In this section we will study basic properties of conic sections, which are the curves
that can be described as graphs of second-degree equations in two variables, obtained by
intersecting a plane and a right circular cone. A circle can easily be obtained by cutting
the cone with a plane perpendicular to the cone’s axis. A plane parallel to a side of the
cone produces a parabola; and a plane at an arbitrary angle to the axis of the cone forms
an ellipse. Finally, an hyperbola can be obtained by cutting the cone with a plane parallel
to the cone’s axis. If we extend the cone through its vertex and form a second cone, we
will find the second branch of the hyperbola.

Figure 1.4: Conic sections obtained by cutting a cone with a plane having an arbitrary
inclination.

The four named conic sections are shown in Figure 1.4 (circle, ellipsis, parabola and
hyperbola). As it has been said, we can obtain them by cutting the cone with a plane
and an angle α to the cone axis. These and additional information to amplify the concepts
explained can be found in [1].

20



CHAPTER 1. PREVIOUS CONCEPTS

1.3.1 Circles

A circle is the closed curve formed by a set of points in a plane that are equidistant from
a given point, called the centre. The distance between any of this points to the centre is
called the radius :

Figure 1.5: Definition of a circle: major elements.

The centre-radius form of the equation of a circle with its centre at the origin and radius
r is:

x2 + y2 = r2, (1.11)

where

• r is the radius of the circle.

• The origin is located at the centre of the circle.

• The two x-intercepts are at the points (r, 0) and (−r, 0).

• The two y-intercepts are at the points (0, r) and (0,−r).

Now, considering the circle of radius R centred at the point (0, 0), the parametric equations
for this circle are the following:

x = r cos(t); y = r sin(t); t ∈ [0, 2π]. (1.12)
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1.3. CONIC SECTIONS

1.3.2 Ellipses

An ellipse is the closed curve in a plane such that the sum of the distances (d1 and d2)
from each point to two fixed points is constant:

Figure 1.6: Some characteristics of an ellipse.

Where

• F1 and F2 are each of the two fixed points called foci (singular, focus).

• V1 and V2 are the points where the line containing both foci intersects the ellipse.

• The semi-major axis (a) is half of the distance between the vertices.

• The centre C of the ellipse is the midpoint of the major axis.

• B1 and B2 are the points where the line perpendicular to the major axis that goes
through the centre intersects the ellipse.

• The semi-minor axis (b) is half of the distance between the co-vertices.

• The focal distance (c) is the distance between the centre and one of the two foci.

• The eccentricity (e) is the quotient of the distance between the foci and the semi-
major axis (e = c

a
).

The equation of an ellipse with its centre at the origin is

x2

a2
+
y2

b2
= 1, (1.13)

where a is the semi-major axis, b is the semi-minor axis; the x-intercepts are at the points
(a, 0) and (−a, 0); and the y-intercepts are at the points (0, b) and (0,−b).

22



CHAPTER 1. PREVIOUS CONCEPTS

Figure 1.7: Important points of an ellipse: x, y-intercepts

The parametric equations of an ellipse are the following (considering equation (1.13)):

x = a cos(t); y = b sin(t); t ∈ [0, 2π]. (1.14)

1.3.3 Parabolas

The set of all points in a plane that are equidistant from a line and a point not on the
line is called a parabola:

Figure 1.8: Main elements of a
parabola.

At figure 1.8 we can see the different elements of a
parabola:

• F is called the focus of the parabola, and it is the
point mentioned above at the definition.

• directrix is the line from which any point of the
parabola is equidistant with the focus.

• V is the vertex of the parabola: its highest or
lowest point, also known as the maximum or the
minimum.

23



1.3. CONIC SECTIONS

Parabolas are quadratic functions, and the standard form to describe them is given by
the equation

x = a(y − h)2 + k, (1.15)

where a, h and k are real numbers. The
vertex has coordinates (k, h) and the focus
(k + 1

4a
, h). Talking about the parametric

equations of a parabola, they are as follows:

x = tan−1(t); y = [tan−1(t)]2; t ∈ R.
(1.16)

Figure 1.9: Coordinates and equations of
the major elements of parabolas.

1.3.4 Hyperbolas

The definition of a hyperbola is the set of points in a plane such that the absolute value
of the difference of the distance of each point from two fixed points (foci, singular focus)
is constant. Both foci are united by means of the transverse axis. Two branches form the
graph of a hyperbola, and each of these branches intersects the transverse axis at a point
called vertex:

Figure 1.10: Important parts of a hyperbola with their coordinates and formulae.
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CHAPTER 1. PREVIOUS CONCEPTS

Explaining into detail Figure 1.10,

• F1 and F2 are the foci of the hyperbola.

• T is the transverse axis: the line that goes through both foci.

• V1 and V2 are the vertices that cross the x axis at points (−a, 0) and (a, 0) respec-
tively.

The equation of a horizontal parabola with centre at the origin and x-intercepts at (a, 0)
and (−a, 0) (figure 1.10) is:

x2

a2
− y2

b2
= 1, (1.17)

where a > 0 and b > 0.

Considering a hyperbola following this equation: x2 − y2 = r2; the parametric equations
for the right branch are:

x = r cosh(t); y = r sinh(t); t ∈ R, (1.18)

where: cosh(t) =
et + e−t

2
and sinh(t) =

et − e−t

2
.

1.4 Integral Calculus

1.4.1 Multiple integrals

A multiple integral is a generalisation of a definite integral, i.e. an integral with start and
end values, which graphically represents the signed area of the region in the xy-plane that
is bounded by the graph of the function f ; to functions of more than one real variable, for
instance f(a, b), or f(a, b, c). Particularly, integrals of a function over a region in R2, that
is a function depending on two variables, are called double integrals, and integrals of a
function of three variables over a region of R3 are called triple integrals. Mathematically,
a multiple integral is defined as follows:

¨
. . .

ˆ
D

f(x1, x2, ..., xn) dx1 ... dxn, (1.19)

where f(x1, x2, . . . , xn) is a function in n variables over D, which is the domain of
integration. Normally, D is represented by nested limits of integration in the reverse order
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1.4. INTEGRAL CALCULUS

of execution, that is, the leftmost integral is computed the last and so on. The difficulty
added in multiple integrals falls on the fact that sometimes it is not trivial to find the
limits of integration in the domain D.

1.4.2 Fubini’s Theorem

Providing conditions for interchanging the order of integration in a multiple integral,
Fubini’s theorem is a very powerful and useful tool. Given that sums are essentially
special cases of integrals (with respect to discrete measures), it also gives conditions for
interchanging the order of summations, or the order of a summation and an integration.
The theorem’s statement is the following:

Theorem 1.4.1. Let f : [a, b] × [c, d] → R be a continuous function. Then, there exist
the integrals

a)

ˆ b

a

(ˆ d

c

f(x, y) dy

)
dx,

b)

ˆ d

c

(ˆ b

a

f(x, y) dx

)
dy,

(1.20)

which coincide.

Observations

1. If we have a more complex integral such that domain of integration D is not given
by intervals (it is not rectangular) but it is defined by φ1(x) and φ1(x) we can
generalise the expression above by stating that

a)

ˆ x2

x1

ˆ φ2(x)

φ1(x)

f(x, y) dy dx,

b)

ˆ y2

y1

ˆ γ2(y)

γ1(y)

f(x, y) dx dy

(1.21)

are equal if the conditions stated at the theorem apply.

2. If f : [a, b]× [c, d]→ R can be expressed as g(x)h(y), equations (1.20) are equivalent
to ˆ b

a

g(x) dx

ˆ d

c

h(y) dy. (1.22)
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CHAPTER 1. PREVIOUS CONCEPTS

Figure 1.11: Example of different limits of integration of (1.21).

1.4.3 Change of variables for multiple integrals

Sometimes it is useful to describe the points of the plane using other coordinates than the
Cartesian ones (x, y), simply because there are limits of integration that can be expressed
easier in other systems of coordinates. The change of one variable for another is in
a geometric sense a transformation from a determined space to a different one, and this
transformation requires a change in the integration region and the addition of a co-relation
factor to the differential. Given a transformation that follows the relation:

f(y1, . . . , yn) −→ f(y1(x1, x2, . . . , xn), . . . , yn(x1, x2, . . . , xn)). (1.23)

Expressing the domain in the new coordinates xi and multiplying by the co-relation factor,
we obtain a multiple integral equal to the original one:

¨
. . .

ˆ
D(~y)

f(y1, . . . , yn)dy1 ... dyn =

¨
. . .

ˆ
D(~x)

f(x1, . . . , xn) |J | dx1 ... dxn, (1.24)

where:

J =
D(y1, . . . , yn)

D(x1, . . . , xn)
=

∣∣∣∣∣∣∣
∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂yn
∂x1

· · · ∂yn
∂xn

∣∣∣∣∣∣∣ , (1.25)

see [12].

In the following lines, we will study how to change from Cartesian coordinates to Spherical
ones.

Change to Spherical Coordinates
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1.5. ORDINARY DIFFERENTIAL EQUATIONS

Supposing that we want to change our function f(x, y, z) to a spherical one following that
D = {x2 + y2 + z2 ≤ R2}.

Expressing x, y and z with spherical coordinates (r ∈ [0,∞) , θ ∈ [0, 2π) and φ ∈ [0, π]):


x(r, θ, φ) = r cos θ sinφ

y(r, θ, φ) = r sin θ sinφ

z(r, φ) = r cosφ

(1.26)

Now, if we calculate |J | from equation (1.25), we get that:

J =

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
cos θ sinφ −r sin θ sinφ r cos θ cosφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cosφ 0 −r sinφ

∣∣∣∣∣∣
= cosφ(−r2 sin2 θ sinφ cosφ− r2 cos2 θ sinφ cosφ)

+ (−r sinφ)(r cos2 θ sin2 φ+ r sin2 θ sin2 φ)

= −r2 cos2 φ sinφ(sin2 θ + cos2 θ)− r2 sin3 φ(cos2 θ + sin2 θ)

= −r2 cos2 φ sinφ− r2 sin3 φ

= −r2 sinφ(cos2 φ+ sin2 φ)

= −r2 sinφ.

Taking the absolute value of this last result, we get that |J | = r2 sinφ. Finally, we can
express equation (1.25) as:

ˆ −R
−R

ˆ √R2−z2

−
√
R2−z2

ˆ √R2−y2−z2

−
√
R2−y2−z2

f(x, y, z) dx dy dz =

ˆ R

0

ˆ 2π

0

ˆ π

0

f(r, θ, φ)r2 sinφ dφ dθ dr.

(1.27)

1.5 Ordinary differential equations

This section is intended to give a general idea and some basic definitions and theorems
about ordinary differential equations (ODE’s in abbreviated form). We will contextu-
alise historically differential equations in general and will define them before coming into
ordinary differential equations. For further information see [9].
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CHAPTER 1. PREVIOUS CONCEPTS

1.5.1 An outline of the historical context

Everything started at 1202 with the observations that Leonardo de Pisa made with respect
to the rise in a population of rabbits and, supposing that only the rabbits of the two
previous generations take part in each reproductive period and that each couple generated
a new one; de Pisa expressed his observations in the following mathematical equations:

rn+1 = rn + rn−1,

where

• rn is the number of male-female couples of rabbits.

• n is the particular generation of rabbits, and hence n ≥ 0.

• r0 and r1 equal to one, and the two rabbits that form these two generations are
called the initial couple.

This is the well-known Fibonacci sequence, which has the general solution c1

(
1+
√
5

2

)n
+

c2

(
1−
√
5

2

)n
. The number 1+

√
5

2
is labelled as ϕ, and it is named the golden ratio. Strange

as it may, seem the golden ratio occurs in the solution of differential equations (see [10]).

Intuitively, a differential equation relates a function f with its derivatives f ′, ..., fn. Differ-
ential equations are studied from a large amount of different perspectives. It is important
to remark that generally, these kind of equations don’t have a solution, only the simplest
differential equations are solvable by explicit formulae. Nevertheless, mathematicians
have developed several methods in order to find some properties of their solutions with-
out finding their exact form.

Differential equations can be classified into some groups, for instance ordinary differential
equations (ODE’s), which are the ones with one or more unknown functions, depending
only on one independent variable; and partial differential equations (PDE’s), which are
differential equations where the unknown function or functions depend on more than one
independent variable, and are pretty more complex . In this chapter we will only study
the first group. Both ODE’s and PDE’s are separated as linear (if the unknown function
and its derivatives appear to the power of one) and nonlinear otherwise.

Newton listed three kinds of differential equations in his 1671 work Methodus fluxionum
et Serierum Infinitarum:
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1.5. ORDINARY DIFFERENTIAL EQUATIONS

dy

dx
= f(x)

dy

dx
= f(x, y)

x1
∂y

∂x1
+ x2

∂y

∂x2
= y.

(1.28)

In 1676, Leibnitz referred to these equations as equatio differentialis. Both Newton and
Leibnitz developed some methods in order to solve physical and geometric problems.

Euler had a very important role in this area of mathematics in the 18th century. He was
the first mathematician who understood and defined clearly what the concept of function
meant, and this fact made easier the resolution of ODE’s.

Peano, Lipschitz, Cauchy and Picard analized mathematically differential equations, and
the first results that proved the solutions of ODE’s under some general conditions were
estabished.

Henry Poincaré made the most important contribution at the beginning of the 20th cen-
tury: the named qualitative theory of ordinary differential equations.

As all concepts and elements, differential equations has been a subject whose meaning
and way of understanding has evolved throughout history. In the past, finding a solution
of the differential equation meant to empress it in terms of elemental functions. However,
as we have said before, this was hardly impossible in the large majority of the cases,
so mathematicians would be satisfied when they found implicit relations in the solutions,
without finding the closed formulae. In the 17th century Newton stated that all ODE’s can
be solved using power series with indeterminate coefficients. Nowadays, numerical calculus
has been strongly developed during this last century at the same time with informatics,
computers and the qualitative theory, which tries to find rigorously properties of these
solutions without knowing them explicitly.

1.5.2 Differential equations

Formally, a differential equation is any equation in which a function or more than one are
the unknowns, and depend on one or more independent variables, which appear together
with their derivatives or partial derivatives in the equation. The simpler differential
equation requires the calculation of the primitive function: given the function f(x, y), we
look for the unknown function y = y(x) such that

y′(x) = f(x, y). (1.29)
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CHAPTER 1. PREVIOUS CONCEPTS

The order or degree of a differential equation is the number of the highest derivative in
the equation.

1.5.3 ODE’s

Introduction

An ordinary differential equation of order m has the form:

f(t, x, x′, x′′, ..., x(m)) = 0, (1.30)

where

F : S ⊂ R× Rm+1 → R.

being S is an open subset, i.e. a subset which doesn’t contain any of its boundary points.
Each variable (t, x, ..., x(m)) goes to F (t, x, x′, ..., x(m)).

A function is a solution of an ODE of m order if its m first derivatives have a certain
relation at every point.

Let x = ξ(t), where ξ : (a, b) ⊂ R→ R. ξ(t) is a solution of (1.30) if

F (t, ξ(t), ξ′(t), ..., ξ(m)(t)) = 0, ∀t ∈ (a, b). (1.31)

We will illustrate the concept of an ordinary differential equation with an example. We
have to find the solution of the first order ODE equation y′ = y: F (x, y, y′) = y′ − y.
Integrating both sides of the first equation we get that:

ˆ
dy

y
=

ˆ
dx

ln y = x+ c

y = c̃ ex.

(1.32)

We will say that a n-dimensional ODE is autonomous if the function f does not depend
on the independent variable, i.e. y′ = f(y), and non autonomous otherwise.

An ODE of order m in normal form, i.e. in a way such that the derivative of greatest
order appears isolated in function of all the other ingredients of the equation, can be
re-written as a first-order system with equivalent m dimension (where equivalent means
that if we solve one of the equations we can look for the solutions of the other).
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1.5. ORDINARY DIFFERENTIAL EQUATIONS

Consider the equation of the pendulum system

y′′(t) +
g

l
sin y(t) = 0, (1.33)

where y is the angle with respect to the vertical axis, g is the acceleration due to gravity
and l is the length of the pendulum. This is an autonomous ODE of order two, and we
want to express it in normal form, i.e. y(m) = f(t, y, y′, ..., y(m−1)) and then re-write this
n-ordered scalar equation to a vector equation (i.e. of first order) and dimension n:

~x′ = ~F (t, ~x)x1
...
xm


′

=

f1(t, x1, x2, ..., xm)
...

fn(t, x1, x2, ..., xm)

 .
(1.34)

As mentioned, the first step is to express the pendulum equation in such a way: y′′(t) =
−a2 sin y, being a2 = g

l
. Now, we define ~x = (x1, x2) as x1 = y and x2 = y′. Hence,

x′1 = x2

x′2 = y′′ = −a2 sinx1.

Now, ~x′ = ~f(~x), where ~f(~x) = (x2,−a2 sinx1), as we wanted.

Existence and uniqueness of solutions

Given the n-dimensional system of ODE’s y′ = f(t, y) and the values (t0, y0) ∈ R × Rn,
known as initial conditions, the associated initial value problem (IVP) or Cauchy Problem
consists on finding a solution function y(t) of the ODE verifying y(t0) = y0.

For instance, consider the 1-dimensional IVP

{
y′ = ay

y(t0) = y0,
(1.35)

being a ∈ R a fixed value. As calculated in example (1.32), the general solution of the
problem equation is y = ceat, where c ∈ R is a constant. From the initial condition
y(t0) = y0, we get that c = y0, so the unique solution of the Cauchy problem is y(t) =
y0e

a(t−t0).

Picard’s Theorem is a basic and important result about existence and uniqueness of ODE’s
solutions. Before stating it, we need some previous definitions.
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Given F : U ⊂ Rn → Rm, we will say that F is Lipschitz or L-Lipschitz with Lipschitz
constant L > 0 if and only if

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖,∀x1, x2 ∈ U, (1.36)

where ‖ · ‖ indicate any norm in Rn and Rm.

We will say that a function F is locally Lipschitz if around every point we can define a
Lipschitz constant, i.e. given F : U ⊂ Rn → Rm, U open, we will say that the function
is locally Lipschitz if ∀x0 ∈ U there exist Lx0 > 0 and Vx0 ⊂ U around x0 such that
F‖Vx0 : Vx0 ⊂ Rn → Rm is Lx0-Lipschitz.

After these definitions, we can state Picard’s Theorem:

Theorem 1.5.1. Given that f = f(t, x) is a function defined in Ω ⊂ R × Rn → Rn, Ω
an open subset, f continuous and locally Lipschitz with respect to x. Given (t0, x0) ∈ Ω,
being a, b > 0 such that the ”rectangle”

Ra,b(t0, x0) := {(t, x) ∈ R× Rn : ‖t− t0‖ ≤ a, ‖x− x0‖ ≤ b}

verifies Ra,b(t0, x0) ⊂ Ω. We define

M := sup
(t,x)∈Ra,b(t0,x0)

‖f(t, x)‖,

α := min{a, b/M}.

Then there exists a unique solution x(t) for the IVP

x′ = f(t, x); x(t0) = x0;

defined for t ∈ Iα(t0) := [t0 − α, t0 + α].

Further on, we will say that as our ODE is C1, i.e. it is continuously differentiable; there-
fore it is locally Lipschitz, and hence it has a unique solution for out IVP. Nevertheless,
we have to prove that if a function is C1 it is locally Lipschitz (see lemma 1.5.1).

Lemma 1.5.1. Given a function f : Rn → Rn that is continuously differentiable (i.e.
C1), it is also locally Lipschitz.

Proof. Let x, ξ be respectively the centre and the radius of some ball B(x̃, ξ). As the
closure is compact, ∂f

∂x
is bounded by some ball. Given the points x, y ∈ B(x̃, ξ), we have:

f(x)− f(y) =

ˆ 1

0

∂f(y + t(x− y))

∂x
(x− y) dt.
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Hence we can get the bound:

‖f(x)− f(y)‖ ≤
ˆ 1

0

‖∂f(y + t(x− y))

∂x
‖ ‖(x− y)‖ dt ≤ L‖x− y‖.
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Chapter 2

The Two-Body Problem

2.1 First Approach

Going back in time, despite the fact that Newton found a geometrical solution of the Two-
Body Problem about 1685, curiously, the analytic solution of the problem for spheres of
finite size was not accomplished until many years later. In Europe, the methods of the
calculus were developed at the beginning of the eighteenth century, but Newton’s system
of mechanics did not find immediate acceptance. It wasn’t until Voltaire vigorously sup-
ported the Newtonian theory, after his visit to London in 1727, that the French accepted
Newton’s explanations. Before that, they preferred the vortex theory of René Descartes.
In a parallel way, in England, mathematicians continued to employ the geometrical meth-
ods of the Principia, and this fact also delayed the analytical solution of the problem.
Daniel Bernoulli was probably the mathematician who first gave an analytical solution for
the problem, but the 2BP was certainly solved in detail by Euler in 1744 in his Theoria
motuum planetarum et cometarum.

In this chapter we consider the problem of two isolated bodies of masses m1 and m2

respectively, with r1 and r2 denoting the position vectors of the two bodies relative to a
fixed origin O. Moreover, Newton’s laws can be applied in our problem, since we are in
an inertial reference frame and no force is acting on the bodies except for the force of
mutual gravitational attraction. Specifically, it asks

“Given at any time the positions and velocities of two massive parti-
cles moving under their mutual gravitational force, the masses also
being known, calculate their position and velocities for any other
time”.

The two-body problem is the easiest specific case of the n-body problem. It describes how
two unconstrained rigid bodies in close proximity having arbitrary spatial distribution of
mass, charge or similar field quantity, orbit around each other; and has a wide range of
areas of applications, for instance molecular dynamics or satellite formation flying. Its
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importance relies on the fact that, contrarily to the Three-Body Problem (and N-Body
Problem), a general solution can be found. This is due to the fact that the 2BP can be
reduced to a central-force problem, as it will be shown later on in the chapter.

Figure 2.1: Simple approach to the two-body problem: two punctual points with their
respective attractive forces.

2.2 Formal Approach

A good way to define formally the 2BP is that it specifies and analyses the dynamics of
two otherwise unconstrained rigid bodies in close proximity that only interact with each
other, which we will consider as punctual points.

It is important to mention the fact that we have made two hypothesis in this problem.
(1) On the one hand, we assume that both bodies are symmetrically spherical, and
hence we can reduce them to punctual masses (see 2.2.1). (2) On the other hand, our
second hypothesis is that the two bodies are isolated; thus, the only force that acts is
the attractive gravitational force between them. As we stated that Newton’s Laws can
be applied, we can say that the attractive gravitational force that m1 exerts on m2, ~F12,
is equal in magnitude and opposite in direction to the force that m2 exerts on m1 (by
Newton’s Third Law of Motion).

Lemma 2.2.1. Given that a body has a spherical symmetry, i.e. its density only depends
of its distance to the centre, it can be reduced to a punctual mass.

Proof. Defining V = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ R2} we can express the total mass of
the body M as:

M =

˚
V

ρ(
√
x2 + y2 + z2) dx dy dz. (2.1)
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CHAPTER 2. THE TWO-BODY PROBLEM

Applying limn→∞ at equation (1.5) for the Centre of Mass:

~rCM =

˝
V
ρ(
√
x2 + y2 + z2) (x, y, z) dx dy dz

M
. (2.2)

We can change the coordinates of the numerator of equation (??) from Cartesian coordi-
nates to the Spherical ones following the procedure shown at 1.4.3.

For each of the coordinates x, y and z:

x :

ˆ R

0

ˆ 2π

0

ˆ π

0

ρ(r)r3 cos θ sin2 φ dr dθ dφ =

ˆ R

0

ρ(r)r3dr

ˆ 2π

0

cos θ dθ

ˆ π

0

sin2 φ dφ = 0;

y :

ˆ R

0

ˆ 2π

0

ˆ π

0

ρ(r)r3 sin θ sin2 φ dr dθ dφ =

ˆ R

0

ρ(r)r3dr

ˆ 2π

0

sin θ dθ

ˆ π

0

sin2 φ dφ = 0; (2.3)

z :

ˆ R

0

ˆ 2π

0

ˆ π

0

ρ(r)r3 cosφ sinφ dr dθ dφ =

ˆ R

0

ρ(r)r3dr

ˆ 2π

0

dθ

ˆ π

0

cosφ sinφ dφ = 0 .

As the numerator of equation (2.2) is zero, we have shown that ~rCM = (0, 0, 0).

In this section we will explain how, applying Newton’s second law of motion and the
Gravitational law, after a mathematical procedure, we end up reducing our initial equation
to a Central-Force Problem.

Firstly, it is important to remember that the Two-Body Problem is set in an inertial ref-
erence frame, and therefore we can apply equations (1.7) and (1.10). Our first hypothesis
stated that the only force that interacted between the two bodies was the gravitational
force, so for the body with mass m1, since Fnet = Fg we can equalise the previous equations
obtaining a new one:

m1a1 = G
m1m2

r2
. (2.4)

Since we know that the acceleration is the second derivative of the position, we can
re-write equation 2.4 in vectorial form as:

m1~̈r1 =
Gm1m2

‖~r2 − ~r1‖3
(~r2 − ~r1). (2.5)

Applying Newton’s third law of motion, we get the following equation for the body with
mass m2:
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m2~̈r2 = − Gm1m2

‖~r2 − ~r1‖3
(~r2 − ~r1). (2.6)

Once we have the system of equation formed by equations (2.5) and (2.6), we can detect
some observations:

1. It’s an autonomous system: the position, velocity and acceleration vectors are
time-dependent, but the system does not depend explicitly on the independent
variable (the time).

2. We have 2 equations, each of them three-dimensional, and each of them of second
order. Hence, we have 12 unknowns (~r1, ~r2, ~̇r1, ~̇r2)(t) ∈ R3 × R3 × R3 × R3:

∂

∂t


~v1
~r1
~v2
~r2

 =



Gm2

‖~r2 − ~r1‖3
(~r2 − ~r1)

~v1

−
Gm1

‖~r2 − ~r1‖3
(~r2 − ~r1)

~v2


. (2.7)

In equation (2.7) we have introduced the notation ~̇r1 = ~v1 and ~̇r2 = ~v2.

2.3 Reduction to a Central-Force Problem

Once we have simplified the masses m1 and m2 from equations (2.5) and (2.6) respectively,
we can subtract the first simplified equation to the second one as follows:

~̈r2 − ~̈r1 = − Gm1

‖~r2 − ~r1‖3
(~r2 − ~r1)−

Gm2

‖~r2 − ~r1‖3
(~r2 − ~r1)

= −G(m1 +m2)

‖~r2 − ~r1‖3
(~r2 − ~r1).

(2.8)

If we call ~r := ~r2−~r1, we obtain a new equation with only 6 unknowns: (~r,~v) ∈ R3×R3.
We can also introduce a mass parameter µ = G(m1 + m2), and we will have a problem
in which the acceleration (~̈r) depends on a function which depends only on the radius
(f(r)); therefore, we will have the reduction to a central-force problem:

~̈r +
µ

r3
~r = 0. (2.9)
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CHAPTER 2. THE TWO-BODY PROBLEM

Equation (2.9) is the 2BP equation of motion. The results obtained from this equation
will be only as accurate as the assumptions (1) and (2).

We say that the Mechanical Energy (1.1) and the Angular Momentum (equation

(1.3)); in particular, the quantities ~h = ~r × ~v, called the Specific angular momentum,
and E = v2/2−µ/r are conserved as we are in an isolated system with no nonconservative
forces acting and there are no dissipative mechanisms.

Given that the angular momentum is different than zero, the solution of the problem
given by equation (2.9) is given by the following equation (see [4]):

r =
h2/µ

1 + e cos θ
. (2.10)

The equation (2.10) is called the Trajectory Equation, and it will be studied accurately
in the next section. Nevertheless, it is important to state that:

• h is the specific angular momentum (~h = ~r × ~v).

• µ is the mass parameter (µ = G(m1 +m2)).

• e is the eccentricity of the curve.

• θ is the angle between ~r and the perihelion.

Figure 2.2: Illustration of the trajectory equation (2.10) with a body describing a
parabolic (left) and an elliptical (right) trajectory.

It can be observed from Figure 2.2 that the pink dot is the body orbiting around the
origin (blue dot) describing both parabolic and elliptical paths. The position vector of
the pink-dotted body with respect to the origin is denoted by ~r, and the angle between
this position vector and the orange-dotted perihelion is labelled as θ.
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If the angular momentum is zero, the position and velocity vectors of the bodies are
parallel and go in the same direction (but not necessarily in the same sense!). Hence, the
bodies will move in a straight line, and either they will collapse or they will separate until
they escape.

2.4 A Study of the Trajectory Equation

Now let’s study the case where h 6= 0. From the Equation of the Trajectory (2.10), we
can classify the different types of trajectories depending on their eccentricity. As it has
been said, the eccentricity indicates the deviation of the orbit from a perfect circle. Four
trajectories are distinguished:

Figure 2.3: Different trajectories repre-
sented by their eccentricity.

Eccentricity Type of Orbit Colour
e = 0 Circular

0 < e < 1 Elliptical
e = 1 Parabolic
e > 1 Hyperbolic

Table 2.1: Brief summary of graph (2.3).

Furthermore, (see [4, page 29] [5]) we can express eccentricity as:

e =

√
1 +

2

µ2
Eh2. (2.11)

From equation (2.11) we can see that orbits can also be classified by their specific me-
chanical energy and their specific angular momentum.

We observe that the domain of a square root encompasses all non-negative values. If
E < 0, then e ∈ [0, 1] and so,
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− µ√
2|E|

≤ h ≤ µ√
2|E|

. (2.12)

For the extreme values of h, e = 0, and therefore we will have a circular trajectory. If
h 6= 0, e ∈ (0, 1), and the trajectory will be elliptical. The semi-major axis and the
semi-minor axis are given by:

a =
h2/µ

1− e2
=

µ

2|E|
;

b =
h2/µ√
1− e2

= a
√

1− e2.
(2.13)

We must also consider the case when E < 0 and h = 0: we will have a collision line.

If E = 0, taking into account that h 6= 0, e = 1, and so the trajectory will be parabolic.
When h is also zero, there will be a collision line.

The last case to consider is when E > 0. Taking into account that h 6= 0 (because if not
we would have a collision line), e > 0, and so the trajectory will be hyperbolic.

Equation (2.11) is illustrated in Figure 2.4:

Figure 2.4: Eccentricity in terms of the specific energy and the specific angular momen-
tum.

It can be said from Figure 2.4 that e is the eccentricity of the trajectories of the body
represented at Table 2.1, E its specific energy and h its specific angular momentum
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It is important to comment that we can make a distinction between trajectories with
E < 0 and the ones with E ≥ 0. Trajectories with E < 0, i.e. circular and elliptical
paths, have an enclosed movement, whereas parabolic and hyperbolic trajectories have a
non-enclosed movement. This observation has a direct implication related to the radius,
which we will discuss some lines below. The following graph represents the potential
energy (Ep = −µ

r
see [12]) with respect to the radius:

Figure 2.5: Trajectories classified by their potential energy with respect to the radius.

The different trajectories are separated in Figure 2.5 according to their potential energy.
Some observations can be made, for instance that elliptical and circular movements (Ep <
0) have an enclosed range for its radius. Particularly, in circular trajectories, we can state
that the radius is not only enclosed but it is constant. On the contrary, the radius the
parabolic and hyperbolic cases is not enclosed, it can take the values (0,+∞).

Finally, I have created a summary (see Table 2.2) exposing the type of orbit and their
respective properties concerning the eccentricity, the energy, the radius and the movement
of the body:

Circular Elliptic Parabolic Hyperbolic
Eccentricity (e) e = 0 0 < e < 1 e = 1 e > 1
Energy (E) E < 0 E = 0 E > 0
Radius value constant not constant
Type of movement bounded not bounded

Table 2.2: Summary of the different types of orbits and their properties.
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2.5 Getting back the two bodies

In the last sections we have shown the solution of the central-force problem and analysed
it, but we must remember that this last problem was a reduction of our initial problem,
which was the Two-Body Problem. As its own name says, in this problem we have two
bodies, so we have to remember our statement (r = r2− r1) and undo this change. From
equations (2.10) and (1.5), we can state that:

Lemma 2.5.1. In an inertial reference frame where the origin is set at the centre of
mass, the dynamics of two bodies which are at positions r1 and r2 is given by:

a) r1 = − m2

m1 +m2

r ;

b) r2 =
m1

m1 +m2

r,
(2.14)

where r is defined by (2.10).

Proof. By the formula of the centre of mass ((1.4)) we can deduce that:

r1 =
(m1 +m2)rCM −m2r2

m1

.

Setting our reference frame at rCM = 0, we obtain that:

r1 = −m2

m1

r2.

Applying that (r2 = r + r1):

r1 = −m2

m1

r2 = −m2

m1

(r + r1)⇒ r1(1 +
m2

m1

) = −m2

m1

r ⇒ r1 =
−m2

m1 +m2

r.

Analogously we could follow the same procedure and find r2.

Corollary 2.5.1. Knowing the type of trajectory described by the position vector r, i.e.
if it is circular, elliptical, parabolic or hyperbolic; the type of trajectories depicted by the
position vectors of the two bodies, defined as r1 and r2, are also known, as they are the
same.

Proof. From equation (2.14), it is known that r1 = c1r and r2 = c2r are multiples of r,
if the position vector r follows a particular trajectory, r1 and r2 will follow the same one
with a variation given by the constants c1 and c2, which will make the trajectory more or
less wide.
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2.5. GETTING BACK THE TWO BODIES

The Corollary 2.5.1 is illustrated in Figure 2.6, showing the two bodies of masses m1 and
m2 following the same type of trajectory in different cases. The line that unifies both
bodies represents that we can express the position of one body with respect of the other
one, and so, it is as if they were “attached”:

Figure 2.6: Back with the two bodies orbiting with circular (left) and elliptical (right)
trajectories.
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Chapter 3

The Restricted Three-Body Problem

3.1 Historical Background

Whittaker described the three body problem as “most celebrated of all dynamical prob-
lems”, and for Hilbert it fulfilled the necessary criteria for a good mathematical problem.
It can simply be stated:

“three particles move in space under their mutual gravitational at-
traction; given their initial conditions, determine their subsequent
motion”.

It seems quite a simple statement, but it belies the complexity of its solution. At the
beginning of the 17th century, after having observed carefully what was going on in space,
Kepler proposed his three laws for planetary motion, describing the elliptical orbits of the
planets around the sun. Since Johannes Kepler first formulated his laws, scientists en-
deavoured to solve for the equation of motion of these bodies. In 1687, Newton published
his Philosophae Naturalis Principia Mathematica, one of the most important books in the
history of science, where he formalised this ideas and announced his laws of motion and
gravitation, stated at section 1.2.

Newton proved Kepler’s laws, and then he turned his attention to other systems than
a Sun-Planet system, with higher degrees of complexity. He began to study systems
containing more than two bodies. One of his main considerations was the Sun-Earth-
Mon system. When he tried to analyse these kind of situations, we came up with a lot of
difficulties, and he remarked “...[his] head never ached but with the studies of the moon”.

After Newton’s death, it was not until 1747 that Alexis Clairaut announced that he
had successfully constructed a series approximation for the motion of the three masses.
Where Newton had aimed to approximate for the perigee of the moon, Clairaut actually
succeeded in doing it. He won the St. Petersburg Academy prize for his work on the
problem in 1752, and in 1759 the value of his approximations was amply demonstrated
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3.1. HISTORICAL BACKGROUND

with Halley’s comet passed Earth within a month of what his equations had predicted,
the margin of error he himself had prescribed.

Also in the eighteenth century, Leonhard Euler had focused on the three body problem.
He proposed a simplification of the general problem where the mass of the third body m3

is taken to be negligible; and also used variation of parameters to study perturbations
of the planetary motion. In fact, the Euler three body problem is known to be a special
case of the mentioned problem, with the remaining two masses orbiting with circular
trajectories.

Simultaneously, the mathematician Joseph Lagrange made a big step in the progress of
the general three body problem. His major contributions included the reduction of the
problem from a 18-th order differential equation system to a system of order 7, and the
description of two types of particular solutions to the general problem, which we will
state later. It is important to remark his development of Lagrangian Mechanics, which
has been a crucial tool not just to the three body problem in particular but to the general
theory of dynamic systems.

Without knowing Lagrange’s advancements, Carl Jacobi reduced the problem containing
differential equations of order 18 to a sixth order system and Euler’s restricted problem
sixth-ordered system to a fourth-ordered one. A constant of motion was found, known as
Jacobi’s integral, which is the only known conserved quantity of the restricted problem.
George Hill, in 1878, developed a very useful application of this constant of motion,
describing the regions of possible motion for the body of negligible mass, known as Hill’s
regions.

Charles-Eugéne Delaunay was another well-known contributor to the theory of the prob-
lem. Performing a huge number of calculations, after two decades of a hard working,
Delaunay’s methods were published in 1846, but it was not until 1860 and 1867 that a
serious publication including two large volumes of over nine hundred pages each came
out. His method involved complex expressions and a slow convergence, and that’s one of
the reasons why it was impractical at that time. Nevertheless, the theoretical work has
been well-regarded and highly influential in a large variety of fields, from lunar theory to
quantum theory.

Henri Poincaré marked the end of the classical period of work on the three body problem.
King Oscar II of Sweden, in the late 19th century, stated the problem as follows, and
offered a price for solving the N -body problem, which is the problem with N rather
than three masses, on the advice of Gösta Mittag-Leffler, Karl Weierstrass and Charles
Hermite:

“Given a system of arbitrary many mass points that attract each
other according to Newton’s law, under the assumption that no two
points collide, try to find a representation of the coordinates of each
point as a series in a variable that is some known function of time
and for all of whose values the series converges uniformly”.
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CHAPTER 3. THE RESTRICTED THREE-BODY PROBLEM

Poincaré’s work was so progressive and important that although he did not solve the
problem, he won the price regardless. A mathematical error was found for N = 3 in his
initial submission, that’s why he destroyed the original paper and published a corrected
paper which rectified the mistake. This new paper contained several ideas which would
open a new approach to the problem and would lead to the development of the theory of
mathematical chaos. Poincaré went to invent new mathematical methods that produced
the modern field of differential geometry and topology in order to answer the stability
question using geometry rather than analytic methods.

Poincaré’s ideas were so influential that his foundations caused a pronounced progress
in the 20th century on many different fronts. Solutions with power series were found by
Sundman in 1912 and by Qiudong Wang in 1991 for N = 3 and for N bodies respec-
tively. However, in both cases, the series constructed converged so slowly that they were
essentially useless in practice.

As no analytical solutions were found, simplified versions of the three body problem were
analysed. Different approaches began to take form, for instance the Copenhagen prob-
lem, which assumes the masses of the two other bodies to be equal. Thanks to Poincaré’s
demonstration that the system is chaotic, the possibility of systematically analysing orbits
based on statistical distributions was brought up. Mathematicians Valtonen and Kart-
tunen looked at the problem from the statistical point of view, analysing the scattering of
the escape orbits, i.e. one mass leaving the two other bodies permanently, and the other
two forming a binary system.

Hénon’s contribution to the restricted three body problem consisted on classifying the
possible motions in what he called families of orbits by perturbing the mass of one of the
bodies taking that the parameter µ = 0, which was an idea that Poincaré had already
explored (see [3]).

3.2 Formal Approach

Naturally following from the two-body problem, first solved by Newton in his Principia,
the three-body problem is a classical astronomical problem. Many mathematicians and
scientists have focused on its general statement, but despite centuries of exploration, there
is no solution to the three-body problem, as there are no coordinate transformations that
can simplify the problem. Unlike the two-body problem or the restricted three-body
problem, which will be introduced in the next section, the full three-body problem has
no analytical solution (see [18]). It can be stated as follows:

“Given at any time the positions and velocities of three massive par-
ticles moving under their mutual gravitational force, the masses also
being known, calculate their position and velocities for any other
time”.

Let’s consider three bodies with vector positions ~r1, ~r2 and ~r3 and masses m1,m2 and m3.
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3.2. FORMAL APPROACH

As the three-body problem is set in an inertial reference frame, we can apply equations
1.7, 1.9 and 1.10. Under the same hypothesis that we mentioned in the two-body problem,
i.e. that the gravitational force is the only force interacting between the bodies and that
the bodies are symmetrically spherical, we get:

m1~̈r1 =
Gm1m2

‖~r2 − ~r1‖3
(~r2 − ~r1) +

Gm1m3

‖~r3 − ~r1‖3
(~r3 − ~r1);

m2~̈r2 = − Gm1m2

‖~r2 − ~r1‖3
(~r2 − ~r1) +

Gm2m3

‖~r3 − ~r2‖3
(~r3 − ~r2); (3.1)

m3~̈r3 = − Gm1m3

‖~r3 − ~r1‖3
(~r3 − ~r1)−

Gm2m3

‖~r3 − ~r2‖3
(~r3 − ~r2).

The three punctual particles are shown at Figure 3.1 with their respective masses, their
position vectors and the attractive forces acting between them:

Figure 3.1: 3-D sheme of the three-body problem.

As we did in the previous chapter, some observations can be extracted from the system
of equations

1. It’s an autonomous system: the position, velocity and acceleration vectors are
time-dependent, but the system does not depend explicitly on the independent
variable (the time).
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CHAPTER 3. THE RESTRICTED THREE-BODY PROBLEM

2. We have 3 equations, each of them three-dimensional, and each of them of second
order. Hence, we have 18 unknowns.

It has been clear that it does not exist a general solution for the three-body problem,
but despite of this fact, some particular solutions have been worked out. The ones that
give periodic solutions give rise to a particular dynamic system. This is a good point to
mention Poincaré’s famous dictuum:

“...what makes these (periodic) solutions so precious to us, is that
they are, so to say, the only opening through which we can try to
penetrate in a place which, up to now, was supposed to be inacces-
sible”.

These periodic solutions are classified in three big families:

1. The first family of analytical solutions dates back to the eighteenth century, and is
called the Lagrange-Euler one. It has been supplemented by one recent orbit due
to C. Moore.

2. Secondly we have the Broucke-Henon-Hadjidemetriou family, dating to the mid-
1970s with periodic rediscoveries of certain members of this family.

3. And finally the Figure-8 family, discovered by Moore in 1993, rediscovered in 2000,
and extended to the rotating case.

Figure 3.2: Two solutions for the 3BP when the three bodies have equal mass.

3.3 The restricted problem

In the last section we made the observation that the system of equations (3.1) contains
18 unknowns. It is also known that there are 10 constants of motion (6 from the center
of mass, 1 of the energy and 3 from the angular momentum). In spite of this fact, there
are still 8 unknowns remaining, so a number of simplifications are made.
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3.3. THE RESTRICTED PROBLEM

The first and most prominent simplification is that we will make the mass of the third
body m3 tend to zero, so that it is negligible. So with this restriction, simplifying the
system (3.1) we obtain:

~̈r1 =
Gm2

‖~r2 − ~r1‖3
(~r2 − ~r1);

~̈r2 = − Gm1

‖~r2 − ~r1‖3
(~r2 − ~r1);

~̈r3 = − Gm1

‖~r3 − ~r1‖3
(~r3 − ~r1)−

Gm2

‖~r3 − ~r2‖3
(~r3 − ~r2).

(3.2)

In this way, the third body has no influence on the movement of the other two bodies,
which we will now call primary bodies, and so, it is only necessary to study how this
movement will influence the one of the body with an infinitesimal mass. This simplified
system is called the restricted three-body problem, and was proposed by Euler. From now
on, we will focus on the planar circular restricted three-body problem (R3BP), that’s why
we will make two more suppositions:

1. The movement of both primary bodies is circular.

2. The movement of the third body is produced in the same plane that contains the
primaries.

In order to make notation easier and without losing generality, we will introduce the
following simplifications:

• m1 +m2 = 1.

• ‖~r1 − ~r2‖ = 1.

• We set the origin at the centre of mass, and define the mass parameter µ = m2.

Under these simplifications we get that the period of the orbit of the primary bodies is
2π, and that the vector positions of the primaries follow the following equations:

~r1 = µ(cos t, sin t);

~r2 = (µ− 1)(cos t, sin t).
(3.3)

We will take the new coordinates (x̂, ŷ) so that it is a simpler system, as it doesn’t depend
explicitly of t (see Figure 3.3), defined as:
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CHAPTER 3. THE RESTRICTED THREE-BODY PROBLEM

(
x̂
ŷ

)
=

(
cos t − sin t
sin t cos t

)(
x
y

)
.

The primaries with masses 1 − µ and µ are at rest and located at the points (µ, 0) and
(µ− 1, 0) respectively.

Figure 3.3: Positions of the primaries in the actual reference frame (represented in
green); versus their positions in a new one (labelled in blue).

In order to clarify the notation we will change the name of the new variables (x̂, ŷ) to (x, y).
We can make some observations from the new coordinates. (1)A clear disadvantage is
that this new reference frame that has been set is not inertial, so Newton’s Laws cannot
be applied. (2) Nevertheless, it has the advantage that it is still an autonomous system
in which the following equations describe the movement of the body with negligible mass
(see [16]):

ẍ− 2ẏ = DxΩ(x, y) ;

ÿ + 2ẋ = DyΩ(x, y),
(3.4)

where:

Ω(x, y) =
1

2
(x2 + y2) +

1− µ
d1

+
µ

d2
+

1

2
µ(1− µ); (3.5)

with d1 =
√

(x− µ)2 + y2 and d2 =
√

(x− µ+ 1)2 + y2. Where d1 and d2 are the
distances from the first primary to the third body and from the second primary to the
third body respectively.
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3.4. EQUILIBRIUM POINTS

The equations of motion for the third body (3.4) has a constant of motion, named Jacobi’s
integral, which is given by:

C = 2Ω(x, y)− ẋ2 − ẏ2. (3.6)

3.4 Equilibrium points

Imagine two primaries orbiting one around another. c These equilibrium points can be
separated in two groups:

1. Triangular points

The equilibrium points L4 and L5 are called triangular points. They lie at equal
distance from the two primaries, and each of them forms the third vertex of an
equilateral triangle with the primaries (see the yellow points represented at Figure
??). These points are stable, and at that place the gravity forces exerted by the
primaries cancels with the centrifugal force, which is directed away of the centre of
mass, also called the barycentre of the system.

As we said, L4 is situated at the third vertex of an equilateral triangle, with the two
primaries forming the other vertices. We can easily obtain L5 by a mirror reflection
of L4 about the x-axis. The fourth and fifth Lagrange points have coordinates:

L4 :

(
µ− 1

2
,

√
3

2

)
;

L5 :

(
µ− 1

2
,−
√

3

2

)
.

(3.7)

2. Collinear points

L1, L2 and L3 are called the colinear equilibrium points, as they are located on the
x-axis (see the magenta points represented at Figure ??). Unlike the triangular
ones, they’re not stable. In order to determine the equations, we have to remember
the Jacobian’s constant, see (3.6). As L1, L2 and L3 lie in a straight line on the
x-axis, y = 0, and as they are equilibrium points, i.e. they are if we put a third
body of negligible mass, from it we would see that the points are at rest, ẋ, ẏ = 0.
Hence, letting Ω′(x, y = 0) = Ω′(x), we want the points that follow this form:

Ω′(x) = 0. (3.8)

Newton’s method can be used to solve equation (3.8). The Newton-Raphson Method
or Newton’s Method is a powerful technique to find zeros of nonlinear equations
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CHAPTER 3. THE RESTRICTED THREE-BODY PROBLEM

numerically (see [8]). It is based on the simple idea of linear approximation, and it
consists of an iterative procedure.

Figure 3.4: Graphical representation of Newton’s Method.

Let the function f : R → R be a differential function and have a zero in s (i.e.
f(s) = 0). We start with an initial estimate x0 of s, called a “guess”. Newton’s
method tends to converge if our initial estimate is close to s, and will have a low
probability to converge if it is not. If xn is the current estimate, then the next
estimate xn+1 is given by:

xn+1 = xn −
f(xn)

f ′(xn)
. (3.9)

We can use the geometric interpretation to explain the method. Figure 3.4 repre-
sents two iterations of Newton’s Method to find a zero xs of the function f(x).

In our problem, we want to calculate the zeros of Ω′(x), so we will change f(x) in
equation 3.9 to Ω′(x) and f ′(x) to Ω′′(x), where (see [16]):

Ω′(x) = x− (1− µ)(x− µ)

((x− µ)2)3/2
− µ(x− µ+ 1)

((x− µ+ 1)2)3/2

Ω′′(x) = 1 +
2(1− µ)

((x− µ)2)3/2
+

2µ

((x− µ+ 1)2)3/2

(3.10)

The result for the x-coordinate location of the three collinear points depending on the
mass parameter µ is represented in Figure 3.5. The code that has been implemented in
order to solve the problem is shown in section A.2.
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3.5. HILL REGION
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Figure 3.5: Variation of the x-coordinate of the collinear equilibrium points with respect
to the mass parameter µ.

In Figure 3.5:

• The grey line represents the movement for the second primary.

• The black line represents the path of the first primary.

• The pink line is for the equilibrium point L1.

• The blue one for L2.

• The green line sketches the movement of L3.

3.5 Hill Region

We defined the Jacobi’s constant c at equation (3.6) (see [20]). From this equation, we
can set the inequality 2Ω(x, y) ≥ C, which places a constraint on the variable position of
x for each value of C, and if x satisfies this condition, then a solution of the restricted
problem through the point x for that concrete value of the constant can be found. The
associated Hill region can be defined as:
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CHAPTER 3. THE RESTRICTED THREE-BODY PROBLEM

R(C) = {(x, y) ∈ R2 | 2Ω(x, y) ≥ C}. (3.11)
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Figure 3.6: Plot of the Hill Region with different Jacobi constants for µ = 0.1.

Lemma 3.5.1. The Hill Region, defined by equation (3.11), gives the enclosed area where
the orbits of the third body can live.

Proof. We consider the inequality 2Ω(x, y) ≥ C. When 2Ω(x, y) = C, we are at the
border of the Hill region, and this equality can only be satisfied if the velocity of the third
body is zero. Therefore, the Hill region is a sector in space x, y where movement can take
place: all the orbits of the third body satisfy the inequality stated at the beginning of
the paragraph. If this last statement weren’t true, i.e. the orbits of the third body could
live at a region out of the area given by the inequality, it would mean that the modulus
of the velocity of the third body is negative, and that is not possible.

I have created a program shown at appendix A.3 in order to depict the Hill Region with
four different Jacobi Constants C = 3.1, 3.4, 3.6, 3.8 respectively (see Figure 3.6 from left
to right and from the top to the bottom). As it can be seen from the cited figure, the
higher the Jacobi Constant, the smaller the Hill Region, as the third body will only be
able to be located in regions of higher energy.
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Chapter 4

Numerical Methods for ODEs

As it was said in section 1.5, given a differential equation, the solution of such problems
in analytical form can be found in very limited cases, only for some rather special right-
hand side function. In this chapter we will study several methods which consist of a finite
number of steps, including one-step and multistep methods, in which we will not look for
a closed-form expression for the desired solution of an ODE but for an approximation to
this unknown solution at certain points, where the solution exists, by means of a numerical
analysis. The aim in this chapter is to define these numerical methods, i.e. to give the
description of these algorithms. We will only deal with explicit numerical methods, i.e.
methods that calculate the state of a system at a later time from the state of the system at
the current time. For having clear the explained information and additional information,
see [6] [11].

Our objective is to find the numerical solution of the problem


∂x

∂t
= f(t, x), t ∈ [0, T ];

x(0) = x0,
(4.1)

where T > 0 is s.t. the IVP (4.1) a unique solution on the time interval [0, T ] exists. This
means that we want an approximation of the solution of this problem at a finite number
of points in the time interval, denoted by {0 = t0 < t1 < ... < tn = T}.

This chapter will help us to choose the best method, that is, the one whose error is the
lowest. Therefore, every time that we introduce a numerical method to solve ODEs, we
will expose its error, and we will refer to it as the order of that particular method. In
numerical analysis, the order of accuracy quantifies how good a numerical approximation
of the numerical solution of a differential equation converges to its solution (see [2, ch.
4]). A numerical solution to a differential equation is said to be n-th order accurate if
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ε(h) = O(hn), (4.2)

where

• ε is the global error, i.e. accumulation of the local error (the error caused during a
single iteration) over all of the iterations.

• h is the step-size (the increment of time).

• O(hn) is written in big O notation, and n is the order of the numerical method.

Nevertheless, before starting with the description and some examples of these methods, a
section is going to be introduced whose aim is to give a first approach to the differentiation
of functions between euclidean spaces of finite dimension, as a good number of the methods
that are going to be explained require these calculations.

4.1 Differentiation of functions

The concept of differential has its origins in the calculation of the planes tangent to a
surface. In 1911, the french mathematician M. Fréchet defined it as Given the function
f : R→ R, f is differentiable at the point a when there exists the

lim
h→0

f(a+ h)− f(a)

h
. (4.3)

This limit is represented as f ′(a), and is named the derivative of f at point a.

The geometrical meaning of the existence of the derivative at point a means that there
exists a tangent line at the point (a, f(a)) to the curve represented by the graph of f , and
the slope of the mentioned tangent line is f ′(a). Hence, the equation of the tangent line
is given by:

y = f(a) + f ′(a)(x− a).

Now, we want to extend the previous results to functions f : Ω ⊂ Rn → R. Given a
function f(~x), a point ~a = (a1, ..., an), and a director vector ~v = (v1, ..., vn), we define the
directional derivative of f in ~a and the direction ~v as:
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f ′v(~a) = lim
h→0

f(~a+ h · ~v)− f(~a)

h

= lim
h→0

f(a1 + h · v1, ..., an + h · vn)− f(a1, ..., an)

h

The partial derivative of a function f in a point ~a = (a1, ..., an) with respect to the ith

component is the directional derivative at the point and in the direction of the vector
~ei = (0, ..., 0, 1(i), 0..., 0). It is denoted by:

f ′ei(~a) =
∂f

∂xi
(~a)

The gradient vector of a function f(~x), x ∈ Rn is the vector formed by all the partial
derivatives (see [12]):

∇f(~x) =

(
∂f

∂x1
(~x), ...,

∂f

∂xn
(~x)

)

4.2 One-Step Methods

The theorems and definitions considered in section 1.5 inform us about the existence and
uniqueness of the solution of the IVP or Cauchy problem, but when we ask ourselves how
to find its solution, there is no answer to the question.

This section focuses on one-step methods, i.e. those methods in which the value of the
approximated solution to the problem (4.1) at a given tn is defined only by the approxi-
mation at the time tn−1.

4.2.1 Euler’s method

A first numerical method for the solution of the initial value problem defined at equation
(4.1) can be worked out by the following observation: as we want that our solution is
of the form y′(t) = f(t, y(t)) with t ∈ [0, T ], f(t, y(t)) is the slope of the desired exact
solution y(t), then:

y(t+ h)− y(t)

h
≈ f(t, y(t));

y(t+ h) ≈ y(t) + hf(t, y(t)).
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We chose a steplenght h 6= 0, and starting with the given initial values (t0, y(t0)), we obtain
at equidistant points (given that h is constant) ti = t0 + ih, i = 1, ..., n approximations
ψi to the values yi = y(ti) of the exact solution y(x) follow the subsequent iterative
algorithm:

ψ0 = y0;

for i =0, ..., n :

ψi+1 = ψi + hf(ti, ψi),

ti+1 = ti + h.

It is important to remark that Euler’s method is an algorithm of order 1, that is, ε ∝ O(h).

4.2.2 Taylor’s method

Euler’s method can be sharpened and expanded into what we call Taylor’s method. From
the solution y(t) of the Cauchy problem (see 1.5.3), which satisfies that:

y′(t) = f(t, y(t)), t ∈ [0, T ], (4.4)

we assume that f has continuous partial derivatives of any order. Differentiating equation
4.4, using the chain rule, we get the following relation at some point t̃ ∈ [0, T ]:

y′(t̃) = f(t̃, y(t̃)),

y′′(t̃) = f1(t̃, y(t̃)) + f2(t̃, y(t̃))y′(t̃),

y′′′(t̃) = f11(t̃, y(t̃)) + f12(t̃, y(t̃))y′(t̃) + f22(t̃, y(t̃))(y′(t̃))2 + f2(t̃, y(t̃))y′′(t̃).

All these derivatives can be compounded exactly, as y(t̃) is a known value. Higher order
derivatives can be computed in the same way, but their corresponding formulae become
increasingly complicated.

Let t > t̃ such that [t̃, t] ⊂ [0, T ]. Then, inside the domain of convergence, the following
relation holds:

y(t) =
∞∑
k=0

yk(t̃)

k!
(t− t̃)k. (4.5)

As it is not possible to compute partial derivatives of any order of the function f , and to
compute the exact value of the solution at some fixed point, equation (4.5) requires the
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summation of an infinite series (which is typically not possible), the computation of the
exact value y(t) is not possible, and therefore we aim to define only its approximation.
Taylor’s method is an algorithm of second order, hence: ε ∝ O(h2).

4.3 Multistep Methods

While in the previous section we considered such numerical methods in which the new
value of the approximation solution is only defined by the previous point; in the se-
quel, the new value of the approximation is defined by several previous approximations.
These methods in which the unknown value yn+k is in function of some previous values
yn+k−1, yn+k−2, ..., yn. In this case, we obtain a method of k steps and, in particular, if
k = 1, we get a one-step method.

Formally, in a multistep method for the solution of the IVP ((1.35)) one computes a value
an+r of y(xn+r) from r ≥ 2 given approximate values ak of y(xk), k = n, n + 1, ..., r − 1,
at equidistant points xk = x0 + kh.

Definition: Let a0, a1, ..., am and b0, b1, ..., bm be given numbers. The iteration of the
form

a0yi + a1yi−1 + ...+ amyi−m = h[b0fi + b1fi−1 + ...+ bmfi−m], i = m,m+ 1, ...; (4.6)

is called a linear m-step method.

In order to initiate multistep methods, the r starting values a0, ..., ar−1 must be our
disposal, and thus, we can obtain them, for example, with the aid of a one-step method.

4.3.1 Adams-Bashforth methods

Adams methods are obtained when in the general formula (4.6) the parameters ai are
defined as:

a0 = 1,

a1 = −1,

a2 = a3 = ... = am = 0

The parameters b0, b1, ..., bm are free parameters. The Adams method with b0 = 0 is called
Adams-Bashforth method, and is going to be studied in this subsection.

In 1833, Bashforth and Adams firstly proposed the idea of extending Euler’s method.
They brought up the idea of allowing the approximate solution at a point to depend on
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the solution values and the derivative values not at the immediate previous step but at
several previous step values so that the method gives a better approximation solution,
and moreover, they wanted to avoid the use of derivatives.

Particularly, we will use Adams-Bashforth 3, which uses the three previous points in
order to calculate the following approximation solution. The approximation solution yi+1

is given by:

yi+1 = yi +
h

12
[23fi − 16fi−1 + 5fi−2], (4.7)

where f(yi) = f(y).

The Adam-Bashforth 3 method is an algorithm of order three, that is ε ∝ O(h3), which
is much lower than the method studied in the first section (see [8]).

4.4 Runge Kutta Methods

In 1895, Runge, came up with the idea of generalising the Euler method by allowing for
a number of evaluations of the derivative to take place in a step. Further contributions
were proposed by Kutta in 1901, and the latter completely characterised the set of the
called the called Runge-Kutta methods.

This is one of the methods most thoroughly used, and is particularly appropriate for
functions whose calculation of derivatives of greater order is complex. It can be used for
equations of arbitrary order transforming them in a system of equations of first order.
Nevertheless, its major inconvenient resides in the difficulty of the error estimation. The
method is given by

yn+1 = yn + h

p∑
i=1

biki, (4.8)

where:
kp = f(tn + csh, yn + h(as1k1 + as2k2 + ...+ as,s−1ks−1))

It is convenient to represent the Runge-Kutta methods by a partitioned tableau of the
form:

c A
b>

Which, in extended form, corresponds to:
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c1 a11 . . . a1r
...

...
...

cr ar1 . . . arr
b1 . . . br

where

• The vector c indicates the positions, within the step, of the stage values

• The matrix A indicates the dependence of the stages on the derivatives found at
other stages

• b> is a vector of quadrature weights, showing how the final approximation solution
depends on the derivatives, computed at the various stages.

Since the advancements in digital computers, mathematicians have focused their in-
terest on the called Runge-Kutta methods, and a large number of research workers
have contributed to the development of particular methods. One of them is the called
Dormand–Prince method, and it is the one that we will use and program. The Dor-
mand–Prince method has seven stages or function evaluations, and it calculates both
fourth and fifth order accurate solutions. The error of the algorithm is taken to be the
difference between the two solutions.

Dormand–Prince method chooses some specific conditions [7], for example uses the coef-
ficients a, b, c that make the error of the solution is of fifth order. The Butcher tableau
for the method is:

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

35
384

0 500
1113

125
192

−2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

Table 4.1: The Butcher tableau for Dormand&Prince method.

In the section of b coefficients, the first row gives the fifth-order accurate solution and the
second row gives the fourth-order accurate solution. Dormand&Prince method’s code,
programmed by myself, can be seen at the appendix A.7.
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4.5 Comparative analysis of the methods

Keeping in mind the algorithms stated in the previous sections from this chapter, we will
compare them in order to ratify the theoretical results, which say that Runge-Kutta 45
method approximates the best the solution of an equation given that it has the greater
order.

We known that the solution of the pendulum system (1.33) taking a = 1 and the time-
interval being t ∈ [0, 7], is the following:

Figure 4.1: Solution to the Pendulum System integrated with Dormand&Prince method.

Euler and Taylor 2 are methods that have order 1 and 2 respectively; that means that
in order to acquire an error under the imposed tolerance a huge number of steps are
required. In Figure 4.2, we can observe the solution of the pendulum system (1.33) has
been approximated with these two methods. Remembering the problem:


θ′′(t) = − sin θ

θ(0) = 1

θ′(0) = 0

t ∈ [0, 7]

The solution obtained with the given initial conditions and the size-step control for both
methods hnew = 0.9 · h · TOL

ε
, where TOL is the tolerance and ε the local error, has been:

From Figure 4.2 we can make the following comments. A lot of integrations are needed
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Figure 4.2: Comparison between the solution of the pendulum system with Euler and
Taylor methods, using a tolerance of 10−3.

so that the local error is lower than the tolerance. This is the main drawback of the
algorithms. Moreover, as Euler method requires more steps than Taylor’s method, the
local error keeps accumulating giving a remarkable global error. The C++ code of both
methods can be seen in A.4 and A.5.

We have also found the solution of the pendulum equation with Adams-Bashforth 3
method:
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h=0.1
h=0.2
h=0.4
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Figure 4.3: Adams-Bashforth approximate solutions of the Pendulum System

As we can observe, several solutions for distinct values of h are drawn at Figure 4.3.
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This is because the step-size is constant for each solution, as it is difficult to implement
a step-size control in multistep methods. This last comment is the main drawback of the
algorithm. We could implement a step-size control, but we would need to solve a linear
system of equations, and this is work that, using other methods, can be saved. The C++
program of Adams-Bashforth method can be seen in A.6.

Also from Figure 4.3, it can be observed that the bigger the h, the greater the error is
(or, in other words, the worse the approximation solution is). This makes sense, as the
error depends proportionally on the size-step.

With Runge-Kutta 45 method, given that the size-step control is hnew = 0.9h(TOL
ε

)1/6,
where TOL is the tolerance and ε is the local error, the solution is the following:
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RK45
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Figure 4.4: Approximation solution to the Pendulum System with Dormand&Prince
method.

Dormand&Prince method approximates perfectly the solution with only eight steps. A
big size-step h still gives an error under the imposed tolerance 10−3, so it is a very good
method.

A Figure showing all the methods in one has been created in order to do a final comparison
between them with the following system:


ẋ = −x− y + x(x2 + y2)

ẏ = x− y + y(x2 + y2)

x (0) = 1

y (0) = 0

(4.9)

It is necessary to remark that we have taken h = 0.02 and the time interval is t ∈ [0, 7]:
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Figure 4.5: Final comparison between all the studied methods with a fixed step-size.

From Figure 4.5 it can be clearly seen that the only integration method that gives a
good approximation solution is Runge-Kutta 45. This result coincides with the theoret-
ical result, which said that the higher the order of a numerical method, the better the
approximation solution is.

Before continuing, we will try to integrate the famous Lorenz system with our Runge-
Kutta method:

Figure 4.6: Runge-Kutta’s 45 approximated solution to the well-known Lorenz system.
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Chapter 5

Objective L4

5.1 About L4 in the Earth-Moon system

Remembering some concepts explained at section 3.4, talking about the Earth-Moon
system, L4 is an equilibrium point (i.e. a region where the gravitational forces cancel out
with the centrifugal force) that forms the third vertex of an equilateral triangle with the
primaries (the Earth and the Moon).

Studies showed that there were bodies located at L4 in many systems. For example, in the
Sun-Jupiter system, a huge number of asteroids (more than 2000) called Trojans, orbit
near its triangular equilibrium points. Another example can be found in the Sun-Saturn
system. One of Saturn’s moon called Dione is located at L4, and in the Saturn-Dione
system, a satellite called Helena is found at its L4 equilibrium point.

Nevertheless, no objects were found near this point (and nor near L5) in the Earth-Moon
system. Astronomers decided to create a simulation including hypothetical small particles
near L4 and L5 to understand this absence. Their only explanation for this observed
curious fact was that additional gravitational forces of more distant bodies, such as the
Sun and the other planets of the Solar System made these regions unstable. They divided
the experiment in two simulations, during which they tested Trojan particles that were
initially located near the L4 Earth-Moon point in either the Earth-Moon-Sun system, and
a system including all 8 planets of the Solar System with the Moon and the Sun.

The results extracted from the first simulation showed that, in the Earth-Moon system,
taking into account the gravity of the Sun, the ”Trojans” artificially located at L4 lasted
more than 109 years. On the other hand, a different result was obtained in the second
simulation. When the other 7 planets were added, no particles survived beyond a few
million years. This fact can be explained because, although the force of gravity exerted by
the other planets on the Earth and on the Moon is much smaller than the Sun’s gravity,
they change the eccentricity of the Earth’s orbit around the Sun.
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5.2 Objective

The aim of this Chapter is to determine the regions in space where a satellite can be
found if we want it to pass through the equilibrium point L4 of the Earth and Moon’s
orbits, i.e. we want to solve the R3BP 3.3 where the two primaries are the Earth and the
Moon and the body of infinitesimal mass is our satellite. The R3BP gives us the system
of differential equations (3.4) that describes the movement of the third body, so we have
to solve an IVP 1.5.3 using the numerical method of integration Dormand&Prince 4.4.

Firstly we want our data (masses of the primaries, distances and radi) to follow the
simplifications stated at section 3.3. Knowing that, in S.I. units

Earth Moon
Distance 384400 km (d12)
Mass 5.972 · 1024 kg (m1) 7.348 · 1022 kg (m2)
Radius 6371 km (r1) 1737 km (r2)

Table 5.1: Data of the Earth and the Moon

Now, using the values exposed in table 5.1 we get the following data in our simplifications:

µ =
m2

m1 +m2

=
7.348 · 1022

5.972 · 1024 + 7.348 · 1022
= 0.01215;

d =
r1
d12

=
6371

384400
= 0.01657.

where µ is the mass parameter and d is the distance between the point from which we
launch the satellite and the centre of the first primary (the Earth).

5.3 Method and procedure

In this section it is going to be explained the technique that will be applied concerning
how are we planning to calculate the regions where a third body can be found with the
condition that we want it to pass through L4 of the Earth-Moon system.

In the first place have to chose a point on the Earth’s surface, i.e. at a distance of 0.01657
from the centre of our planet. Once the launching point is set, we have to calculate the
modulus of the limiting velocity that makes our satellite pass through L4 between the
region of angles that is going to be determined in each specific case. Then, we do multiple
launches of the satellite with this velocity (in modulus), and calculate which is the angle
that makes the distance between our satellite and L4 minimal. After saving this angle,
the number of that particular vector and the time of integration (which is the time that it
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takes our satellite launched from the Earth’s surface to the triangular point); we increase
the modulus of the velocity and perform in a parallel way until with 100 different initial
velocities.

With the data assembled, taking the two limiting trajectories that go from Earth to L4, we
will have determined the region that we wanted, i.e. we will have reached our objective.

5.4 Results

In this section I will show the images and explain the program that I have developed in
order to sketch the regions in space where a third body can be found if we throw it from
a point on the surface of Earth (actually I have done the experiment with three different
launching points) to the equilibrium point L4.

5.4.1 My C++ programs

Having the objective of my work in mind, I have programmed two codes which are shown
at appendix A.8 and A.9 and will be explained in the following lines in order to run my
simulation.

In the first program, firstly I have created a .dat file in which we type the initial conditions
of the satellite. The file is read by the program and then it begins to proceed with the
algorithm. The mentioned .dat file contains the following information:

1. The initial launching position of the satellite.

2. t0, which is the initial time of the launching.

3. The final time of integration, common for all the different iterations.

4. The initial angle at the launching point from which we fire off the satellite.

5. The modulus of its initial velocity.

This file is created in order to save work and time having only to modify the numbers
on it in case we want to change the launching point instead of recompiling the whole
program.

Once the program reads the .dat file, given a maximum and a minimum angle, we subdi-
vide the segment formed by both maximum and minimum angles in 21 equidistant points,
i.e. we launch 21 vectors, integrate the system of equations (3.4) with Dormand&Prince
method for each launch and save the number of the vector such that the distance between
the approximation solution and the point L4 is minimum. Then, we save the vector on
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the right and the one on the left of the selected vector. The inclination of these vectors
will give us two new minimum and maximum angles, and we will use them in the next
iteration of the algorithm. Figure 5.1 shows this process with the first 2 iterations and 7
vectors on each one.

Figure 5.1: Illustrative representation of the first two iterations of the part of code A.8.

Where:

• → are all the launches with the same velocity in modulus and different angles.

• → represent the selected vectors on each iteration, i.e. the ones that make the
distance between the equilibrium point and my approximation solution minimum.

• → are the limit vectors that define the region where we are going to fire off our
satellite in the next iteration.

After these steps, we will have a good approximation for the vector whose solution passes
through L4 for that particular velocity. Finally, we repeat this iterative process for 99
more different velocities. Before changing the modulus of the initial velocity, I open
another .dat file, where the following elements are saved:

1. The modulus of the initial velocity v0, which I have selected in order that the satellite
goes through L4.

2. The angle that makes the distance from my approximation solution to the equilib-
rium point minimum for each velocity.

3. The time of integration required until the satellite reaches L4.
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The second program reads the mentioned file and repeats the integrations of the function,
saving all the necessary data in order to be able to plot the different trajectories of my
satellite with different velocities that go through L4. The difference between the first and
the second program is that in the second one, the time of integration is particular for
each velocity, it is the one calculated and saved in the first program, so that when I plot
the results, all the fire offs start and and at the same points (start at Earth and arrive at
L4).

5.4.2 P1: 180 degrees with the horizontal

The first point from which we will launch our satellite is obviously located at the surface
of Earth, and makes an angle of 180 degrees with the horizontal. We consider that Earth
has a volume, so the satellite can’t cross the planet during its trajectory to L4. For that
reason, it is clear that all the possible initial angles θ of firing off are contained in the
interval θ ∈ [π

2
, 3π

2
], as shown at Figure 5.2.

Figure 5.2: Initial setup illustrating the different launching vectors from the point
making 180o with the horizontal.

Many comments can be made from figure 5.2. In the first term, I am going to identify
the different symbols and objects:
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a) The initial position of the satellite is represented by •.

b) The valid region for firing off the third body is delimited by the green-lined section.

c) The different launches are labelled as →.

d) - - - represents the straight-line trajectory that the satellite would follow if it would
have infinite velocity from the centre of Earth.

e) — is the trajectory that would define the satellite if it had infinite velocity form the
launching point.

Analysing the image, it is clear that launching our satellite with infinite velocity, it would
directly go to L4 in a straight line, thus the launching angle would be 120o with respect
to the horizontal. Now, talking about our initial position, as it is a little bit at the left
from the centre of Earth, if we launch the third body with infinite velocity, the angle will
be a little bit lower. Calculating it by trigonometry, I have found that it would have the
value of 119.17o rounding it up to two decimal places.

With this initial concepts clear, I had to execute the programs explained in the previous
section. Before that, I needed to calculate the lower-limiting initial velocity (in modulus)
that makes our satellite go through the triangular point L4. Taking into consideration
that the launching point needs to be at the surface of Earth and that the distance from
any point of the circumference to the centre of Earth is 0.01657 in our scaled units,
giving the angle with the horizontal at which we fire off our satellite to the program, it
calculates the third body’s x and y initial positions. In order to calculate the minimum
initial velocity I have made several trials executing the program and then plotting the
data with GNUplot. Rounding the number up to four significant figures, I have set the
modulus of the minimum launching initial velocity to v0 = 2.850 (in our scaled units).
As there are 99 more different velocities and vi = 0.1 + vi−1, v99 = 12.75.

Furthermore, I considered important to plot the angle of launching with respect to the
velocity in order to show that, as calculated theoretically, as the modulus of the initial
velocity is larger, the angle of launching decreases until it reaches a minimum angle of
119.17 degrees when the velocity tends to infinity (see Figure 5.3).

The purple curve in Figure 5.3 is the plotting of the data obtained from my programs.
As it can be observed, the greater the initial velocity, the lower the launching angle.
This makes sense, because the faster the satellite is fired off, the less the gravitational
forces will affect to it. If the initial velocity is infinity, the influence of the gravitational
forces exerted by the two primaries on the satellite is null. The dark blue line represents
the minimum angle at which we would fire off the satellite supposing that it would have
infinite velocity(119.17 degrees). The orange and the light blue lines delimit the region
where theoretically we would fire off the satellite without crossing the Earth. This section,
as I said before, is enclosed for the values θ ∈ [π

2
, 3π

2
], and is represented by the green-lined

region.
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Figure 5.3: Angle of launching with respect to the modulus of the initial velocity of the
satellite at P1.

Finally, with the data extracted from my second program, I made the plot portrayed at
Figure 5.4, which shows the solution of my paper at P1, i.e. it depicts the region where a
third body can live if we throw it from the mentioned point and want it to pass through
L4:

Figure 5.4: Solution at the point P1.

The solution region is shaped in pink at Figure 5.4. From left to right, the vectors at this
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Figure are the approximation solutions of the system of equations (3.4) of the trajectories
of the satellite for the first, second, seventh and last iterations of my second program.

5.4.3 P2: 135 degrees with the horizontal

I decided to find a solution for my research question also for the launching point P2, which
makes 135o with the horizontal and is also located at the surface of our planet. As in the
first simulation, we are considering the Earth as a planet with its own volume, so it is
not possible to cross it as we cannot cross a rock neither. Similarly to the first case, the
solutions that are enclosed in a range of 180 degrees are valid for the launching of our
satellite, as it can be seen in Figure 5.5. The interval valid for the angle θ in this case is
θ ∈ [π

4
, 5π

4
].

Figure 5.5: Initial setup for the launching of our satellite at point P2.

The nomenclature of Figure 5.5 is exactly the same as the one used in Figure 5.2. In this
case, the minimum angle from which we would launch the satellite if it had an infinite
velocity would be 119.73o rounding the value to two decimal places.

In order to execute my programs, I needed to introduce the angle with respect to the
horizontal so that it could calculate the initial coordinates of P2, and also the modulus of
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the initial velocity. Following the same procedure as the explained in the previous section
and rounding the value up to four significant figures, I set it as v0 =[FALTA], as always
in the scaled units.

With the data gathered after executing my programs, I have depicted the launching angle
(which is the one that makes the distance between L4 and my approximation solution
minimum for that particular velocity), with respect to the modulus of the initial velocity
(see Figure 5.6):

Figure 5.6: Angle of launching with respect to the modulus of the initial velocity of the
satellite at P2.

It can bee seen from Figure 5.6 that, as I said before, the theoretical range of angles
where we could fire off the satellite (delimited by the orange and the light blue lines
and represented by the thin green lines) is given by θ ∈ [π

4
, 5π

4
]. Nevertheless, with the

simulation we can observe that practically, there’s an asymptote at θ = 119.73o when
limv→∞. This is due to the fact that the fastest way in order to arrive from one point
to another in space is in a straight line. If we want our satellite to follow a straight-line
trajectory it means that the gravitational forces exerted by the primaries on it would have
no effect, i.e. we will have to launch it with infinite velocity.

5.4.4 P3: 225 degrees with the horizontal

The third and last simulation that I did was to find the solution of my research question
firing the satellite off from P3, which is a point forming an angle of 225 degrees with the
horizontal located at the surface of Earth.

Imposing the condition that the satellite cannot cross the Earth as it would be as crossing
a hard rock, in this third case we have a problem. If we launched the third body with
infinite velocity, it would go in a straight line to L4, i.e. the launching angle would be
of 119.09 degrees, while the theoretical 180o range of angles from which we can launch
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Figure 5.7: Solution at the point P2.

the satellite without crossing Earth goes from θ ∈ [3π
4
, 7π

4
]. This means that there will be

some initial velocities whose trajectories will cross our planet before arriving to L4, i.e.
there will be a region that will not be valid for our solution.

The comment that I made in the last lines of the previous paragraph is clearly illustrated
at Figure 5.8. The line that goes directly from P3 to L4 forms an angle of 119.09o with the
horizontal, i.e. if we threw the satellite with infinite velocity from that point and wanted
it to pass through L4, the launching angle would be 119.09o. Nevertheless, this angle does
not belong to the valid region of angles where the third body can be launched without
crossing Earth. At Figure 5.8 this region is marked with thin green lines. This means
that, when executing the program and plotting the results, we will have to calculate the
velocity that separates the valid from the invalid region and make a difference between
the valid and the non valid regions where the third body can live. The calculation for
the mentioned velocity can be easily performed, as the limiting valid angle is known to
be 135 degrees.

As in the previous simulations, I considered it would be interesting to plot the variation
of the launching angle with respect to the velocity at which the satellite is launched. The
difference between Figure 5.9 and Figures 5.3 and 5.6 is that the first one is divided in
two regions representing a valid angle of launching (green-lined region) and a non-valid
one (illustrated with thin red lines); while the other Figures only have a valid zone of
launching angles in their respective 180o range of possible firing off angles from which
the satellite does not cross Earth. It can be clearly seen from the Figure 5.9 that the
minimum angle of launching (represented by the dark blue line) is bigger than the angle
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Figure 5.8: Basic geometric information for the launching of our satellite from P3.

at which the satellite would be thrown directly to L4 if it had infinite velocity (orange
line). Thus, the region between the mentioned lines is not valid, as it would mean that
the satellite crosses our planet during its trip to the triangular point. At the same time,
the vertical line in the Figure separates the valid initial velocities, which are enclosed in
the interval FALTA ≤ v0 ≤ FALTA2 from the non-valid ones, which are encolsed in the
interval FALTA2 < v < +∞.

Finding the approximate solution of the system of equations (??), the valid region for the
satellite is represented in pale green at Figure 5.10.

5.5 Comparing the results

In order to structure the work, I have created Table [5.2 so that the comparison between
the data obtained from the C++ programs for the 3 simulations is easier to perform:
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Figure 5.9: Bla bla bla.

Figure 5.10: Solution at the point P3.

5.6 Future research directions

In order to accomplish my objective, it has been necessary for me to explore and learn a
lot of physical and in particular mathematical concepts. These last were the most difficult
for me due to the fact that they are majorly abstract. What happened to me, was that
the more I read books, the more possible ways to continue my work opened, so I had to
do the tough decision of which route to take in a lot of moments.
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CHAPTER 5. OBJECTIVE L4

P1 P2 P2

Coordinates (−0.00442, 0) (0.000433, 0.0117) (0.000433,−0.0117)
Possible angles θ ∈ [90o, 270o] θ ∈ [45o, 225o] θ ∈ [135o, 315o]
Direct angle 119.17o 119.73o 119.09o

Possible velocities v ∈ [2.850,∞) v ∈ [2.838,∞) v ∈ [2.854, 5.220]

Table 5.2: My caption

A huge number of ways to continue my exploration are possible. What I would like to
do next would be to focus on periodic orbits and study the stability of the Lagrangian
points, particularly of the one that I have been working with, L4. Then, I could study
what varieties are and analyse the stable and unstable ones.

I could also continue by doing something more practical and applied to real life. For
instance, it would be interesting to find the orbit from Earth to L4 such that the energy
consumed by our satellite would be minimal, and maybe model our system by introducing
another variable parameter, the mass of the satellite, which would not be constant but
would be every time smaller, simulating the real uncoupling of some parts of a satellite.
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Appendix A

Programs

A.1 Auxiliary functions

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6

7 using namespace std;

8

9 //Second derivative of function Omega(x)

10 double omegaxx(double mu, double x){

11 double r1 = fabs(x-mu);

12 double r2 = fabs(x-mu+1.);

13 return 1.+(2.*(1-mu))/pow(r1,3)+(2.*mu)/pow(r2,3);

14 }

15

16 //First derivative of Omega(x)

17 double omegax(double mu, double x){

18 double r1 = fabs(x-mu);

19 double r2 = fabs(x-mu+1.);

20 return x-((1.-mu)*(x-mu))/pow(r1,3)-((1.+x-mu)*mu)/pow(r2,3);

21 }

22

23 //Function Omega(x)

24 double omega(double mu, double x){

25 double r1 = fabs(x-mu);

26 double r2 = fabs(x-mu+1.);

27 return 0.5*x*x + (1.-mu)/r1 + mu/r2 + 0.5*mu*(1.-mu);
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28 }

29

30 //Function Omega(x,y)

31 double Omega(double mu, double x, double y){

32 double r1 = sqrt(pow(x-mu,2)+y*y);

33 double r2 = sqrt(pow(x-mu+1.,2)+y*y);

34 return 0.5*(x*x+y*y) + (1.-mu)/r1 + mu/r2 + 0.5*mu*(1.-mu);

35 }

36

37 // Sum of vectors

38 VEC suma(VEC a, VEC b){

39 int n = a.size();

40 VEC c(n);

41 for (int i = 0; i < n; ++i){

42 c[i] = a[i]+b[i];

43 }

44 return c;

45 }

46

47 //Multiplication of between a constant and a vector

48 VEC multiplica(double c, VEC v){

49 int n = v.size();

50 for (int i = 0; i < n; ++i){

51 v[i] = c*v[i];

52 }

53 return v;

54 }

55

56 //Multiplication between square matrices and a vector

57 VEC multiplicaMV(MAT A, VEC b){

58 int n = b.size();

59 VEC c(n);

60 for(int i =0; i < n; ++i){

61 c[i] = 0;

62 for(int j = 0; j < n; ++j){

63 c[i] = c[i]+A[i][j]*b[j];

64 }

65 }

66 return c;

67 }

68

69 //System function

70 VEC function(VEC y){ // y’ = f(y)

71 int n = y.size();

72 VEC f(n);
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73 f[0] = y[1];

74 f[1] = -sin(y[0]);

75 return f;

76 }

77

78 MAT Dfunction(VEC y){

79 int n = y.size();

80 MAT Df(n, VEC(n));

81 Df[0][0] = 0;

82 Df[0][1] = 1;

83 Df[1][0] = -cos(y[0]);

84 Df[1][1] = 0;

85 return Df;

86 }

87

88 // Euclidean distance between two points

89 double norm(VEC a, VEC b){

90 int n = a.size();

91 double norma = 0;

92 for (int i = 0; i < n; ++i){

93 norma = norma + pow(a[i]-b[i],2);

94 }

95 return pow(norma,0.5);

96 }

A.2 Newton’s Method for the collinear equilibrium

points (L1, L2, L3)

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 FILE *fitxer;

7

8 using namespace std;

9

10

11 double omegaxx(double mu, double x);

12

13 double omegax(double mu, double x);

14
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15 //Newton’s Method to find the zeros of Omegax

16 double Newton(double mu, double x0){

17 double x1 = x0 - omegax(mu,x0)/omegaxx(mu,x0);

18 while(fabs(x1-x0)>1.e-15){

19 x0 = x1;

20 x1 = x0 - omegax(mu,x0)/omegaxx(mu,x0);

21 }

22 return x1;

23 }

24

25

26 int main(){

27 fitxer = fopen("L1L2L3.dat","w");

28 for(double mu = 0; mu <= 0.5; mu = mu + 0.000001){

29 fprintf(fitxer,"%12.15e %12.15e %12.15e %12.15e %12.15e\n",

30 mu, Newton(mu,mu-0.1),Newton(mu,mu-1.1),Newton(mu,mu+0.1),mu-1);

31 }

32 fclose(fitxer);

33 }

A.3 Hill Region

1 #include "stdio.h"

2 #include <cmath>

3 #include <vector>

4 #include <string.h>

5 #include <sstream>

6 #include <string>

7 FILE *fitxer;

8

9 using namespace std;

10

11 typedef vector<vector<double> > MAT;

12 typedef vector<double> VEC;

13

14

15 double Omega(double mu, double x, double y);

16

17

18 int main(){

19 fitxer = fopen("hill.dat","w");

20 for (double i = 0; i <= 4000; ++i){

21 double x = -2.+i/1000.;
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22 for (double j = 0; j <= 4000; ++j){

23 double y = -2.+j/1000.;

24 if (pow(Omega(0.1, x, y)-1.55,2)<0.000001){

25 fprintf(fitxer,"%12.15e %12.15e \n", x, y);

26 }

27 }

28 }

29 for (double i = 0; i <= 80; ++i){

30 for (double j = 0; j <= 4000; ++j){

31 double x = -6.+i/10.+j/1000.;

32 double y = -2.+j/1000.;

33 if (Omega(0.1, x, y)-1.55 <0){

34 fprintf(fitxer,"%12.15e %12.15e \n", x, y);

35 }

36 }

37 }

38 fclose(fitxer);

39 }

A.4 Euler method

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 #include <vector>

7 FILE *fitxer;

8

9 using namespace std;

10

11 typedef vector<vector<double> > MAT;

12 typedef vector<double> VEC;

13

14

15 VEC suma(VEC a, VEC b);

16

17 VEC multiplica(double c, VEC v);

18

19 VEC function(VEC y);

20

21 double norm(VEC a, VEC b);

22
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23

24 VEC euler(double h, VEC y){

25 int n = y.size();

26 VEC f(n);

27 f = function(y);

28 return suma(y,multiplica(h,f));

29 }

30

31

32 int main(){

33 int n = 2;

34 double h = 0.1;

35 double t0 = 0;

36 double tf = 5;

37 double TOL = 0.001;

38 VEC Y0(n);

39 Y0[0] = 1;

40 Y0[1] = 0;

41 fitxer = fopen("euler.dat","w");

42 fprintf(fitxer,"%12.15e %12.15e \n", Y0[0], Y0[1]);

43 double hnew = h;

44 while (t0 < tf){

45 VEC Y(n);

46 VEC Y1(n);

47 VEC Y2(n);

48 double error = 10;

49 while (error > TOL){

50 h = hnew;

51 Y = euler(h, Y0);

52 Y1 = euler(h/2, Y0);

53 Y2 = euler(h/2,Y1);

54 error = norm(Y,Y2);

55 hnew = 0.9*h*TOL/error; //Step-size control

56 }

57 if (t0 + h > tf){

58 Y = euler(tf-t0,Y0);

59 fprintf(fitxer,"%12.15e %12.15e \n", Y[0], Y[1]);

60 t0 = tf;

61 }

62 else{

63 t0 = t0+h;

64 //fprintf(fitxer,"%12.15e %12.15e \n", Y1[0], Y1[1]);

65 fprintf(fitxer,"%12.15e %12.15e \n", Y2[0], Y2[1]);

66 Y0 = Y2;

67 }
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68 }

69 fclose(fitxer);

70 }

A.5 Taylor Second Order method

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 #include <vector>

7 FILE *fitxer;

8

9 using namespace std;

10

11 typedef vector<vector<double> > MAT;

12 typedef vector<double> VEC;

13

14 VEC suma(VEC a, VEC b);

15

16 VEC multiplica(double c, VEC v);

17

18 VEC multiplicaMV(MAT A, VEC b);

19

20 VEC function(VEC y);

21

22 MAT Dfunction(VEC y);

23

24 double norm(VEC a, VEC b);

25

26 VEC taylor(double h, VEC y){

27 int n = y.size();

28 VEC f(n);

29 MAT Df(n, VEC(n));

30 f = function(y);

31 Df = Dfunction(y);

32 return suma(suma(y,multiplica(h,f)),multiplica((h*h/2),

33 multiplicaMV(Df,f)));

34 }

35

36

37
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38 int main(){

39 int n = 2;

40 double h = 0.1;

41 double hmax = 0.3;

42 double t0 = 0;

43 double tf = 5;

44 double TOL = 0.001;

45 VEC Y0(n);

46 Y0[0] = 1;

47 Y0[1] = 0;

48 fitxer = fopen("resultattaylor.dat","w");

49 double hnew = h;

50 while (t0 < tf){

51 VEC Y(n);

52 VEC Y1(n);

53 VEC Y2(n);

54 double error = 10;

55 while (error > TOL){

56 h = hnew;

57 Y = taylor(h, Y0);

58 Y1 = taylor(h/2, Y0);

59 Y2 = taylor(h/2,Y1);

60 error = norm(Y,Y2);

61 hnew = 0.9*h*TOL/error;

62 }

63 if (t0 + h > tf){

64 Y = taylor(tf-t0,Y0);

65 fprintf(fitxer,"%12.15e %12.15e \n", Y[0], Y[1]);

66 t0 = tf;

67 }

68 else{

69 t0 = t0+h;

70 //fprintf(fitxer,"%12.15e %12.15e \n", Y1[0], Y1[1]);

71 fprintf(fitxer,"%12.15e %12.15e \n", Y2[0], Y2[1]);

72 for (int i = 0; i < n; ++i){

73 Y0[i] = Y2[i];

74 }

75 }

76 if (hnew > hmax) hnew = hmax;

77 }

78 fclose(fitxer);

79 }
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A.6 Adams-Bashforth three-step method

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 #include <vector>

7 FILE *fitxer;

8

9 using namespace std;

10

11 typedef vector<vector<double> > MAT;

12 typedef vector<double> VEC;

13

14 VEC suma(VEC a, VEC b);

15

16 VEC multiplica(double c, VEC v);

17

18 VEC multiplicaMV(MAT A, VEC b);

19

20 VEC function(VEC y);

21

22 MAT Dfunction(VEC y);

23

24 VEC taylor(double h, VEC y);

25

26

27 VEC AdamBashforth3(double h, VEC y1, VEC y2, VEC y3){

28 int n = y1.size();

29 VEC f1(n);

30 VEC f2(n);

31 VEC f3(n);

32 f1 = function(y1);

33 f2 = function(y2);

34 f3 = function(y3);

35 return suma(y3,multiplica(h/12,suma(multiplica(23,f3),

36 suma(multiplica(-16,f2),multiplica(5,f1)))));

37 }

38

39

40 int main(){

41 int n = 2;

42 double h = 0.2;

43 double t0 = 0;
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44 double tf = 7;

45 //double ERR = 0.1;

46 VEC Y0(n);

47 Y0[0] = 1;

48 Y0[1] = 0;

49 VEC Y1(n);

50 VEC Y2(n);

51 fitxer = fopen("adams.dat","w");

52 Y1 = taylor(h, Y0);

53 Y2 = taylor(h, Y1);

54 fprintf(fitxer,"%12.15e %12.15e \n", Y0[0], Y0[1]);

55 fprintf(fitxer,"%12.15e %12.15e \n", Y1[0], Y1[1]);

56 fprintf(fitxer,"%12.15e %12.15e \n", Y2[0], Y2[1]);

57 while (t0 < tf){

58 VEC Y3(n);

59 Y3 = AdamBashforth3(h, Y0, Y1, Y2);

60 fprintf(fitxer,"%12.15e %12.15e \n", Y3[0], Y3[1]);

61 Y0 = Y1;

62 Y1 = Y2;

63 Y2 = Y3;

64 t0 = t0+h;

65 }

66 fclose(fitxer);

67 }

A.7 Dormand & Prince method

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 #include <vector>

7 FILE *fitxer;

8

9 using namespace std;

10

11 typedef vector<vector<double> > MAT;

12 typedef vector<double> VEC;

13

14 VEC suma(VEC a, VEC b);

15

16 VEC multiplica(double c, VEC v);
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17

18 VEC multiplicaMV(MAT A, VEC b);

19

20 VEC function(VEC y);

21

22 double norm(VEC a, VEC b);

23

24

25 MAT RK45(double h, VEC y){

26 int n = y.size();

27 VEC k1(n),k2(n),k3(n),k4(n),k5(n),k6(n),k7(n);

28 VEC aux(n),Y4(n),Y5(n);

29 MAT YY(2, VEC(n));

30

31 k1 = function(y);

32 for (int i=0; i < n; ++i){

33 aux[i] = y[i] + (1./5.)*h*k1[i];

34 }

35 k2 = function(aux);

36 for (int i=0; i < n; ++i){

37 aux[i] = y[i] + ((3./40.)*k1[i] + (9./40.)*k2[i])*h;

38 }

39 k3 = function(aux);

40 for (int i=0; i < n; ++i){

41 aux[i] = y[i] + ((44./45.)*k1[i] - (56./15.)*k2[i]

42 + (32./9.)*k3[i])*h;

43 }

44 k4 = function(aux);

45 for (int i=0; i < n; ++i){

46 aux[i] = y[i] + ((19372./6561.)*k1[i] - (25360./2187.)*k2[i]

47 + (64448./6561.)*k3[i] - (212./729.)*k4[i])*h;

48 }

49 k5 = function(aux);

50 for (int i=0; i < n; ++i){

51 aux[i] = y[i] + ((9017./3168.)*k1[i] - (355./33.)*k2[i]

52 + (46732./5247.)*k3[i] + (49./176.)*k4[i] - (5103./18656.)*k5[i])*h;

53 }

54 k6 = function(aux);

55 for (int i=0; i < n; ++i){

56 aux[i] = y[i] + ((35./384.)*k1[i] + (500./1113.)*k3[i]

57 + (125./192.)*k4[i] - (2187./6784.)*k5[i] + (11./84.)*k6[i])*h;

58 }

59 YY[0] = aux;

60 k7 = function(aux);

61
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62 for (int i=0; i < n; ++i){

63 YY[1][i] = y[i] + ((5179./57600.)*k1[i] + (7571./16695.)*k3[i]

64 + (393./640.)*k4[i] - (92097./339200.)*k5[i] + (187./2100.)*k6[i]

65 + (1./40.)*k7[i])*h;

66 }

67

68 return YY;

69 }

70

71

72

73 int main(){

74 int n = 2;

75 double h = 0.1;

76 double hmax = 10;

77 double t0 = 0;

78 double tf = 7;

79 double TOL = 0.001;

80 VEC Y0(n);

81 Y0[0] = 1;

82 Y0[1] = 0;

83 fitxer = fopen("rk45pendul.dat","w");

84 fprintf(fitxer,"%12.15e %12.15e \n", Y0[0], Y0[1]);

85 double hnew = h;

86 while (t0 < tf){

87 MAT Y(2, VEC(n));

88 double error = 10; //forcem q entri dins del while

89 while (error > TOL){

90 h = hnew;

91 if (h > hmax) h = hmax;

92 Y = RK45(h, Y0);

93 error = norm(Y[0],Y[1]);

94 hnew = 0.9*h*pow(TOL/error,1./6.);

95 }

96 if (t0 + h > tf){

97 Y = RK45(tf-t0,Y0);

98 fprintf(fitxer,"%12.15e %12.15e \n", Y[0][0], Y[0][1]);

99 t0 = tf;

100 }

101 else{

102 t0 = t0+h;

103 fprintf(fitxer,"%12.15e %12.15e \n", Y[0][0], Y[0][1]);

104 Y0 = Y[1];

105 }

106 }
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107 fclose(fitxer);

108 }

A.8 Launching angles

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 #include <vector>

7 #include <string.h>

8 #include <sstream>

9 #include <string>

10 FILE *fitxer;

11

12 using namespace std;

13

14 typedef vector<vector<double> > MAT;

15 typedef vector<double> VEC;

16

17

18 VEC suma(VEC a, VEC b);

19

20 VEC multiplica(double c, VEC v);

21

22 VEC multiplicaMV(MAT A, VEC b);

23

24 VEC function(VEC y){ // y’ = f(y)

25 double mu = 0.01215;

26 int n = y.size();

27 VEC f(n);

28 f[0] = y[2];

29 f[1] = y[3];

30 f[2] = 2.*y[3] - ((1.-mu)*(y[0]-mu))/pow(pow(mu-y[0],2)+pow(y[1],2),3/2)

31 + mu*(mu-y[0]-1.)/pow(pow(-mu+y[0]+1.,2)+pow(y[1],2),3/2) + y[0];

32 f[3] = -2.*y[2] + (mu-1.)*y[1]/pow(pow(mu-y[0],2)+y[1]*y[1],3/2)

33 - mu*y[1]/pow(pow(-mu+y[0]+1.,2)+y[1]*y[1],3/2)+y[1];

34 return f;

35 }

36

37 double norm(VEC a, VEC b);

38
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39 MAT RK45(double h, VEC y);

40

41

42

43 int main(){

44 //Data:

45 fitxer = fopen("entrada.dat","r");

46 double initial_time, final_time, angle_sortida, vel_inicial;

47 fscanf(fitxer, "%lf %lf %lf %lf\n", &inital_time, &final_time,

48 &angle_sortida, &vel_inicial);

49 fclose(fitxer);

50

51 //L4:

52 const VEC L4(n);

53 L4[0]= 0.01215-0.5;

54 L4[1]= sqrt(3.)/2.;

55 L4[2]= 0.;

56 L4[3]= 0.;

57

58 fitxer = fopen("angle3.dat","w");

59 double distancia_max = 0.;

60 for (double j; j < 100; ++j){

61 double anglebo = -1.;

62 double minimdistL4= 1000.;

63 double modulvel = vel_inicial+j/10.;

64 double angle_inf = min(atan((L4[1]-0.01657*sin(angle_sortida))/(L4[0]

65 -(0.01215+0.01657*cos(angle_sortida)))), angle_sortida-M_PI/2.);

66 double angle_sup = angle_sortida+M_PI/2.;

67 double temps_final=0.;

68 double num = -1;

69 for (double k = 0; k < 10; ++k){

70 double sec = angle_sup - angle_inf;

71 for (double l = 0; l < 21; ++l){

72 double angle = angle_inf + sec/20.*l;

73

74 int n = 4;

75 double h = 0.001;

76 double hmax = 0.01;

77 double t0 = initial_time;

78 double tf = final_time;

79 double TOL = 0.00000000000001;

80

81 VEC Y0(n);

82 Y0[0] = 0.01215+0.01657*cos(angle_sortida);

83 Y0[1] = 0.01657*sin(angle_sortida);
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84 Y0[2] = modulvel*cos(angle);

85 Y0[3] = modulvel*sin(angle);

86

87 double hnew = h;

88 while (t0 < tf){

89 MAT Y(2, VEC(n));

90 double error = 10; //forcem q entri dins del while

91 while (error > TOL){

92 h = hnew;

93 if (h > hmax) h = hmax;

94 Y = RK45(h, Y0);

95 error = norm(Y[0],Y[1]);

96 hnew = 0.9*h*pow(TOL/error,1./6.);

97 }

98 if (t0 + h > tf){

99 Y = RK45(tf-t0,Y0);

100 double aux = pow(pow(Y[0][0]-L4[0],2)

101 +pow(Y[0][1]-L4[1],2),0.5);

102 if (minimdistL4 > aux){

103 minimdistL4 = aux;

104 anglebo = angle;

105 num = l;

106 temps_final = tf;

107 }

108 Y0 = Y[0];

109 t0 = tf;

110 }

111 else{

112 t0 = t0+h;

113 double aux = pow(pow(Y[0][0]-L4[0],2)

114 +pow(Y[0][1]-L4[1],2),0.5);

115 if (minimdistL4 > aux){

116 minimdistL4 = aux;

117 anglebo = angle;

118 num = l;

119 temps_final = t0;

120 }

121 Y0 = Y[0];

122 }

123 if (hnew > hmax) hnew = hmax;

124 }

125 }

126 angle_inf = angle_inf + sec/20.*(num-1);

127 angle_sup = angle_inf + sec/20.*(num+1);

128 if (angle_inf<1.*M_PI/4.) angle_inf=1.*M_PI/4.;
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129 if (angle_sup>1.*M_PI/4.) angle_sup=5.*M_PI/4.;

130 }

131 //cout <<modulvel << " "<< anglebo << " "<< minimdistL4 << endl;

132 fprintf(fitxer,"%12.15e %12.15e %12.15e\n", modulvel, anglebo,

133 temps_final);

134 if (distancia_max < minimdistL4) distancia_max = minimdistL4;

135 }

136 fclose(fitxer);

137 cout << distancia_max << endl;

138 }

A.9 PVI angles

1 #include <iostream>

2 #include "math.h"

3 #include "stdlib.h"

4 #include "stdio.h"

5 #include <cmath>

6 #include <vector>

7 #include <string.h>

8 #include <sstream>

9 #include <string>

10 FILE *fitxer;

11

12 using namespace std;

13

14 typedef vector<vector<double> > MAT;

15 typedef vector<double> VEC;

16

17 VEC suma(VEC a, VEC b);

18

19 VEC multiplica(double c, VEC v);

20

21 VEC multiplicaMV(MAT A, VEC b);

22

23 VEC function(VEC y);

24

25 double norm(VEC a, VEC b);

26

27 MAT RK45(double h, VEC y);

28

29

30
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31 int main(){

32 fitxer = fopen("data.dat","r");

33 VEC modulvel(100);

34 VEC anglebo(100);

35 VEC tf(100);

36 for (int i=0; i < 100; ++i){

37 fscanf(fitxer, "%lf %lf %lf\n", &modulvel[i],&anglebo[i],&tf[i]);

38 }

39 fclose(fitxer);

40 for (int i=0; i < 100; ++i){

41 stringstream ss;

42 ss << "2difsolucions" << i << ".dat";

43 string s = ss.str();

44 char *cstr = &s[0u];

45 fitxer = fopen(cstr,"w");

46

47 int n = 4;

48 double h = 0.001;

49 double hmax = 0.01;

50 double t0 = 0;

51 double TOL = 0.00000000000001;

52

53 VEC Y0(n);

54 Y0[0] = 0.01215+0.01657*cos(5.*M_PI/4.);

55 Y0[1] = 0.01657*sin(5.*M_PI/4.);

56 Y0[2] = modulvel[i]*cos(anglebo[i]);

57 Y0[3] = modulvel[i]*sin(anglebo[i]);

58

59 fprintf(fitxer,"%12.15e %12.15e \n", Y0[0], Y0[1]);

60 double hnew = h;

61 while (t0 < tf[i]){

62 MAT Y(2, VEC(n));

63 double error = 10; //forcem q entri dins del while

64 while (error > TOL){

65 h = hnew;

66 if (h > hmax) h = hmax;

67 Y = RK45(h, Y0);

68 error = norm(Y[0],Y[1]);

69 hnew = 0.9*h*pow(TOL/error,1./6.);

70 }

71 if (t0 + h > tf[i]){

72 Y = RK45(tf[i]-t0,Y0);

73 fprintf(fitxer,"%12.15e %12.15e \n", Y[0][0], Y[0][1]);

74 Y0 = Y[0];

75 t0 = tf[i];
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76 }

77 else{

78 t0 = t0+h;

79 fprintf(fitxer,"%12.15e %12.15e \n", Y[0][0], Y[0][1]);

80 Y0 = Y[0];

81 }

82 if (hnew > hmax) hnew = hmax;

83 }

84 fclose(fitxer);

85 }

86 }
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Appendix B

Time-lined Contributions to the 3BP

Tycho-Brahé (1546-1601)
Was a Danish nobleman who observed stellar and planetary positions notewor-
thy both for their accuracy and quantity. He also developed the Tychonic geo-
heliocentric system, in which the Sun and the Moon orbit around Earth, while the
other planets orbit the Sun.

Johannes Kepler (1571-1630)
Considered a key figure of the 17th Century, the German mathematician, astronomer
and astrologer was the first to formulate the three laws that describe planetary
motion. He proposed a problem which results to be a special case of the two-
body problem, named in his honour the Kepler Problem, and since then, scientists
endeavoured to solve for the equation of motion of the planets.

Isaac Newton (1642-1727)
He is the well-known physicist and mathematician that described the three laws
of motion and the law of universal gravitation (also known as the law of universal
attraction), which was accurate enough to lead to the discovery of unknown planets
such as Neptune and Pluto. Moreover, he showed that Kepler’s laws of planetary
motion correspond to the 2BP, and lead to the modern form of the 3BP.

Leonhard Euler (1707 – 1783)
This important Swiss mathematician and physicist attempted to solve for the mo-
tion of a particle that is acted upon by the gravitational field of two other point
masses that are fixed in space; also known as Euler’s Three-body problem. Further
on, he raised a deeper question and wondered if the small contributions from the
gravitational interactions of all the planets make the planetary system unstable over
long periods of time. A lot of mathematicians examined this question and tried to
give an answer to it, some of which are mentioned below in this list.

Alexis Clairaut (1713 – 1765)
Born in France, in 1747 he worked out a series approximation to the 3BP. After
winning the St. Petersburg Academy prize for his work on the problem, in 1759 the
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value of his approximations was amply demonstrated when Halley’s comet passed
Earth within a month of what his equations had predicted, the margin of error he
himself had prescribed.

Joseph-Louis Lagrange (1736 – 1813)
Attempting to solve the general 3BP, this Italian mathematician and astronomer
managed to discover the five special-case solutions of the restricted 3BP, known as
the Lagrangian points. As we know, the libration points are positions in which a
third body of negligible mass can remain in a stable position with respect to the
primaries.

Pierre-Simon Laplace (1749 – 1827)
This influential French scholar made an important contribution to celestial mechan-
ics using lagrangian conceptions to better explain the dynamics of bodies. He spent
a good time of his life working in mathematical astronomy, and his work culminated
with the verification of the dynamical stability of the Solar System.

Carl Gustav Jacob Jacobi (1804 – 1851)
Was a German mathematician who worked on planetary theory and other particular
dynamical problems that occupied his attention from time to time. While working
in celestial mechanics, he introduced the Jacobi integral, which is the only known
conserved quantity for the CR3BP (Circular restricted three-body problem).

William Rowan Hamilton (1805 – 1865)
Born in Dublin, he used Delaunay’s work in order to develop the equations of motion
in Hamiltonian form. Hamiltonian’s equations derive from Hamiltonian’s mechanics,
and this equations can be used to solve the R3BP system over time.

Joseph Liouville (1809 – 1882)
The French mathematician created the known Liouville dynamical system. If we
treat the 3BP as a Liouville dynamical system, its exact solution can be expressed
in terms of elliptic integrals.

Urbain Jean Joseph Le Verrier (1811 – 1877)
He was a French mathematician that is best known for predicting the existence
and position of Neptune using only mathematics. He also worked on planetary
perturbations. Talking about the Sun-Mercury system, he noted that the orbital
precession (i.e. the change of orientation of the rotational axis) of Mercury was
faster than the predicted by the Newtonian theory.

Charles-Eugène Delaunay (1816 – 1872)
Born in France, he made a very important theoretical work related to the 3BP. His
contribution concerned a huge number of calculations, and consisted on taking g
repeated canonical transformations of the problem, known as Delaunay’s methods.

John Couch Adams (1819 – 1892)
The British mathematician predicted the existence and position of Neptune. He
also developed the well-known Adams methods, which are multistep numerical inte-
gration methods for differential equations.
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Simon Newcomb (1835 – 1909)
This Canadian mathematician worked on the research for trigonometric series so-
lutions for the 3BP. proved that the differential equations describing the motion of
the planets could formally be satisfied by trigonometric series.

George William Hill (1838 – 1914)
Born in the US, he focused on the mathematics describing the 3BP. Particularly,
he discovered the Hill region, which is a very useful application of Jacobi’s integral,
describing the regions of possible motion for the body of negligible mass.

Jean Gaston Darboux (1842 – 1917)
The French mathematician made a particular case of the 2BP, known as Darboux
problem. He also did some research in potential applications, which are intermediate
steps in order to solve the 3BP.

Jules Henri Poincaré (1854 – 1912)
The French genius has been one of the most important contributors to the 3BP.
When Oscar II of Sweden celebrated his 60th birthday in 1887, he established a
price for anyone who could find the solution to the n-body problem but, if find-
ing its solution was not possible, the price would be given to the most important
contribution. Henri Poincaré won this price despite the fact of not having found
the exact solution of the problem. Karl Weierstrass, one of the judges, said that
“[Poincarre’s] publication is of such importance that it will inaugurate a new era in
the history of celestial mechanics”.

Edmund Taylor Whittaker (1873 – 1956)
In 1898 he was asked ti guve a report on the current state of planetary theory by
the British Association for the Advancement of Science. In his work, he discussed
about the 3BP and gave a concise and clear description of many ideas discussed by
other mathematicians such as invariant integrals, stability, periodic and asymptotic
solutions to the 3BP...

Karl Frithiof Sundman (1873 – 1949)
He was born in Finland, and proved that there existed a convergent infinite series
solution to the 3BP by means of analytic methods. Further on, Q. Wang would
generalise Sundman’s solution to the n−body problem.

George David Birkhoff (1884 – 1944)
Born in America, he attempted to solve the four color problem; and in 1913 he
proved Poincaré’s special case of the 3BP known as the Last Geometric Theorem.
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Conclusion

Arrived at this point, in the first term I will focus on my work itself and make several
observations about my objective and the results that I have obtained. Secondly I will
make a few comments about my impressions towards my research project including a
little bit of reflexion.

Firstly we will verify if the objectives stated at the introduction have been accomplished:

Talking about the first purpose, a specific chapter has been designed in order to explain
briefly the topics that I have reviewed by myself and were not part of the school syllabus.
Moreover, when a definition or a proposition was not clear or trivial for me, I developed
a lemma including the mentioned idea and its proof.

Secondly, an analysis about the areas of mathematics relative to the calculus bloc and the
links between them are going to be made. Integral calculus, differential equations, and
numerical calculus are the three main areas that come to my mind which I have studied
accurately throughout my work. The system of differential equations of the R3BP cannot
be solved exactly (analytically), so we need to find its solution approximately (numeri-
cally). There are several numerical methods used to solve this equations. This methods
solve differential equations by integrating them and finding approximate solutions, so a
review of integral calculus must be made.

In the third place, the answer of my question consists on integrating the differential system
of equations (3.4), which is an IVP, with the most powerful of the studied numerical
methods (Runge-Kutta method) to find the numerical approximation solution for the
movement of a satellite.

Last but not least, the degree of difficulty increases in order to reach our principal objec-
tive, i.e. to find a solution to my research question. A Figure showing the region where
the third body can live given the conditions that I stated previously has been developed
by myself launching the satellite from three different points at the surface of Earth; in-
cluding a final table comparing all the results obtained. All in all, our objectives have
been accomplished ideally.

Passing to the second part of my conclusion and talking about my impressions after the
realisation of this project, the principal difficulty that I have come up with has been the
level of mathematics required to be able to understand the bibliography. Due to the lack
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of previous mathematical knowledge, a big part of my work has consisted on the learning
of calculus, which I have included in a summarised way. Another important difficulty
has been that the books that I read showed an incomplete reasoning in the sense that
the results of the theorems and some indications to understand the proofs were exposed
but these were not explained in a detailed way anywhere. Contrarily, I have tried to
structure and make this paper a little more easier to understand so that the propositions
and the lemmas appeared always with their respective reasoning and proofs. This has
been really complicated because a lot of the proofs have been elaborated by myself, and I
have managed to widely develop a lot of images so that the understanding of the concepts
was clear.

I have found necessary to remark that not only has it provided me with a huge number of
concepts about which I had literally no idea such as the eccentricity, differential equations,
or Runge-Kutta method; but I have also travelled through history and realised how men
could manage to solve really complex questions with three resources: a pencil, a paper
and their privileged brains. Reading and learning about the 3BP I learnt, of course,
the mathematical part, but I also noticed how all the authors that I have mentioned at
appendix B and a lot more that I haven’t named have been working on this unsolvable
problem for centuries.

It has impressed me a lot the fact that in the last chapter I can’t hardly find a number
keeping in mind that this is a mathematical exploration. Nevertheless, all the figures
and me being able to understand and comment them have required a hard and solid
mathematical background. So I would refer as my fifth chapter, which, as I have said
before, is the part where me and my knowledge have played a role; as the result and
the culmination of a huge task of research and understanding, shown in the rest of the
chapters.

All in all, the realisation of my research project has given me a completely different
vision of mathematics, a lot more deductive, abstract and formal. Finally, one of the key
ideas that can be extracted from the well-known Dunning-Kruger effect (Nobel Price in
psychology in 2000) is that the more that we learn about something, the more quickly
we discover a world of subtlety about things that we have yet to know. This is the main
conclusion to which I have arrived after doing this research project.
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