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Preamble

This essay contains the results of a research project on number theory focusing
on two open problems that involve the factorial function. This project originated
in a mathematics class at school in September 2016 where Stirling’s formula was
discussed. I was intrigued by the fact that the square root of the quotient n™/n!
happened to be very close to the n'* Fibonacci number, at least for not too large
values of n. This observation triggered my interest for the factorial function.

At the same time I had started reading about the ring of p-adic integers (which
is an extension of the ordinary integers by allowing base p expansions to become
infinite), and learned that many features of ordinary calculus have analogues in the
p-adic numbers, for instance the convergence of sequences and infinite series. Then
I wondered if there was also a p-adic version of Stirling’s formula, providing a non-
recursive way of approximating factorials. While pursuing this idea I discovered that
p-adic analysis is a rich discipline, relatively recent in the body of mathematics.

Although most topics in p-adic analysis are too advanced, I discovered a surpris-
ingly unsolved problem by browsing the Internet, namely the series > n! converges
in the p-adic metric for all primes p and it is not known whether its sum is rational
(i.e., the quotient of two ordinary integers) or irrational. The fact that > n! con-
verges can easily be seen in base 10 by observing that when n grows large enough
the lowest digits of the partial sums become unchanged since the subsequent terms
being added are divisible by increasingly high powers of 10.

After several months of effort I could not find a proof of the fact (conjectured
since 1984) that »_ n! is a p-adic irrational for all primes p, yet I obtained several
partial results which contribute to this open problem. I could prove, among other
facts, that ) p*»(™) converges to an irrational number for every p, where vp(n!)
denotes the highest power of p dividing n!. This result is the subject of a short
article [3] which has been posted in the arXiv database —the reference is not given
since this is an anonymous version of the essay.

Meanwhile, my interest for the factorial function led me to work in another so
far unsolved problem, proposed in an article that appeared in the arXiv in 2017.
It was an apparently simple conjecture about binomial coefficients, with relevant
implications in group theory. Specifically, it was conjectured that for every positive
integer n there exist two primes p and r such that all binomial coefficients (Z) are
divisible by either por r if 1 <k <n —1.

I became very much engaged with this problem and succeeded in proving the
truth of the conjecture in many cases. It is easy to see, using Lucas’ Theorem, that
the conjecture holds when n is a prime power or a product of two prime powers.
I proved that the conjecture also holds when the difference between n and the
greatest prime smaller than n is smaller than some prime power dividing n, and
refined this result in various ways. Two sequences of numbers for which our remarks
do not suffice to prove the conjecture were accepted for publication in the On-Line
Encyclopedia of Integer Sequences [4], [5].



We also found other assumptions under which the conjecture is true. For exam-
ple, every n has infinitely many multiples for which the conjecture holds, assuming
the truth of Cramér’s Conjecture.

Interestingly, some results in this part of our work are based on the same ap-
proximation of n! by powers of a prime p dividing n! (Legendre’s formula) that were
used in the part concerned with p-adic analysis.

The two open problems that I have studied are the subject of Part I and Part 11
of this essay. The first part corresponds to the problem on divisibility of binomial
coefficients, and the second part is devoted to convergence of p-adic series containing
the factorial function. We present them in two separate parts because the first part,
entitled On the divisibility of binomial coefficients, is what is going to be presented
as an extended essay for the International Baccalaureate. More precisely, due to the
word limit, we are going to present this first part with sections 8, 9 and 10 shifted
to the Appendix, since, although these sections contain interesting results, they are
not completely focused on the main objective of our project.

I should also mention that I have created a website in which all the C++ pro-
grams that were used to obtain numerical evidence in this work are made available
to other people who could perhaps continue this research or go towards other goals.
This website also contains explanations of the mathematical concepts involved in
the problems that we have studied. The address is

https://numbertheoryandgrouptheory.yolasite.com/
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Part 1

On the Divisibility of Binomial

Coefflicients

Is it true that for every positive integer n there are two primes p and r

such that if 1 < k < n — 1 then (Z) is divisible by at least one of p or r?






1 Introduction

Apart from their many uses in various fields of mathematics, binomial coefficients
display interesting divisibility properties. Kummer’s [18] and Lucas’ [20] Theorems
are two remarkable results relating binomial coefficients and prime numbers. Kum-
mer’s Theorem provides an easy way to determine the highest power of a prime
that divides a binomial coefficient, and Lucas’ Theorem yields the remainder of the
division of a binomial coefficient by a prime number. Davis and Webb [7] found
a generalization of Lucas’ Theorem for prime powers. Legendre [19] found two ex-
pressions for the largest power of a prime p that divides the factorial n! of a given
integer n.

However, some conjectures about binomial coefficients still remain unproven. We
focus on the following condition considered by Shareshian and Woodroofe in a recent
paper [29]:

Condition 1. For a positive integer n, there exist primes p and r such that, for all
integers k with 1 < k <n—1, the binomial coefficient (Z) 15 divisible by at least one

of p orr.
This condition leads to the following question:

Question 1.1. Does Condition 1 hold for every positive integer n?¢

In [29] it is conjectured that Condition 1 is true for all positive integers, yet there
is no known proof. Our main purpose in this work is to try to prove this conjecture,
which is relevant because it is an open problem with implications in number theory
and group theory. Therefore, it is very thrilling to obtain research results that might
lead to a complete proof.

We also introduce the following variation of Condition 1, which we study later
in this work:

Definition 1.2. A positive integer n satisfies the N -variation of Condition 1 if there
exists a set consisting of N different primes such that if 1 < £ < n — 1 then the
binomial coefficient (Z) is divisible by at least one of the N primes.

This essay is organized as follows. After providing background information in
Section 2, we prove that n satisfies Condition 1 if it is a product of two prime
powers and also if it satisfies a certain inequality regarding the largest prime smaller
than n. Next we provide bounds related to the prime power divisors of n and discuss
several cases in which n satisfies Condition 1 depending on the largest prime smaller
than n/2. In Section 6 and Section 7 we use prime gap conjectures in order to settle
some cases in which a sufficiently large integer n satisfies Condition 1, and discuss
cases in which n satisfies the 3-variation of Condition 1. Finally, in Section 8 we
provide upper bounds for a number N so that all integers n satisfy the N-variation of
Condition 1, followed by computational results and a generalization of Condition 1
to multinomials.

We have created a website that includes explanations and C++ codes of most
concepts contained in this work. The address is

https://numbertheoryandgrouptheory.yolasite.com/

Screenshots of this website are included in the Appendix.


https://numbertheoryandgrouptheory.yolasite.com/

2 Background

Three theorems about divisibility of binomial coefficients and factorials are relevant
for the proofs given in this work.

Theorem 2.1. (Kummer [18]) Let k and n be integers with 0 < k < n. Ifa is a
positive integer and p a prime, then p® divides (Z) if and only if o carries are needed
when adding k and n — k in base p.

Theorem 2.2. (Lucas [20]) Let m and n be positive integers, let p be a prime, and
let m = myp® +mp_1p* '+ -+ map+mo and n = ngp® +n_1p" 4+ nap+ng
be the base p expansions of m and n respectively. Then (ZL) = Hf:o (Tgl) (mod p).

It is important to notice that by convention (7::) = 0 if m < n. Hence, if any of
the digits of the base p representation of m is 0 whereas the corresponding digit of
the base p representation of k is not 0, then (’:) is divisible by p because everything
is multiplied by zero and by Lucas’ Theorem we have that (Tg) =0 (mod p). This
is usually the way in which we use Lucas’ Theorem throughout this work.

The following diagram displays an example of this property. In order to know if
(f;) is divisible by 2, we represent both numbers in base 2 and compare the digits.
The key is the pair of numbers marked with red. Because the digit below (which
corresponds to 12) is larger than the number above (which corresponds to 21), from

Lucas’ Theorem we infer that (f;) is divisible by 2.

21= 110101
12m | 01111010

Figure 1: Example of an application of Lucas’ Theorem.

Theorem 2.3. (Legendre [19]) If v,(n) denotes the maximum power o of p such

that p* divides n, then v,(n!) = > {%J
k=1 LP

Here |z denotes the integer part of z. Moreover, Legendre also showed that

n — Sy(n)

N =
vp(n!) p—

Y

where S,(n) denotes the sum of all the digits in the base p expansion of n.



3 Some cases of n satisfying Condition 1

3.1 When n is a prime power

Proposition 3.1. A positive integer n satisfies the 1-variation of Condition 1 with
p if and only if n = p® for some a > 0, for a € N.

« zeroes

Proof. If n = p*, then the base p representation of n is equal to 10...0. Any k
such that 1 < k <n — 1 has at most o — 1 zeroes in base p. Therefore, at least one
of the digits of the base p representation of £ is bigger than the corresponding digit
of n in base p (at least the leading one). It then follows from Lucas’ Theorem that
(Z) is divisible by p. Otherwise, if n is not a prime power, then the i digit of n in
base p is not 0 for some value of . Thus, we can find at least one k such that the *
digit of k in base p is larger than 0. Hence, by Lucas’ Theorem (Z) is not divisible
by p. O]

Corollary 3.2. If n = p® + 1, then n satisfies Condition 1 with p and any prime
factor of n.

Proof. The proof relies on the fact that (7]?) + (krj:l) = (7;:11) for all positive integers
m and k. If m is a power of a prime p, then it follows from Proposition 3.1 that
(’;‘) and (,::1) are divisible by p if 1 < k < m — 1. In these cases, because (Tg:ll) is
the result of the sum of two multiples of p, it also is a multiple of p. When k£ =1 or

k = m, we have that (m,jl) = m + 1, so any prime factor of m + 1 divides it. O

3.2 When n is a product of two prime powers

Proposition 3.3. If a positive integer n is equal to the product of two prime powers
p{ and p’g, then n satisfies Condition 1 with py and ps.

Proof. Observe that lcm(pff,pg ) = n. The base p; representation of n ends in «
zeroes and the base ps representation of n ends in 3 zeroes. Because any positive
k smaller than n cannot be divisible by both p{ and pg , it is not possible that k&
finishes with « zeroes in base p; and 3 zeroes in base ps. Thus, we can apply Lucas’
Theorem modulo the prime p; if p$ [k or modulo the prime p, if pg k. ]

3.3 Considering the closest prime to n

After analyzing many cases in which n satisfies Condition 1, we observed that the
largest prime smaller than n was almost always one of the two primes with which n
fulfilled Condition 1. This finding led to the following statement and proof:

Theorem 3.4. Let q be the largest prime smaller than n and let pi* be any prime
factor divisor of n. If n —q < p;*, then n satisfies Condition 1 with p; and q.

For the proofs of Theorem 3.4 and Corollary 3.6 we use the Bertrand-Chebyshev
Theorem:



Theorem 3.5. (Bertrand-Chebyshev [2]) For every integer n > 3 there exists a
prime p such that n/2 < p < n.

Proof of Theorem 3.4. We distinguish between two intervals: the interval (1,n — ¢]
and the interval (n — ¢,n]. Due to the symmetry of binomial coefficients, we only
consider k < n/2. By the Bertrand-Chebyshev Theorem, we know that there is at
least one prime between n/2 and n, hence n/2 < ¢ < n. Then, forall k, k < n/2 < q.
The base ¢ representation of n is 1 - ¢+ (n — q). Therefore, we do not need to
consider the interval (n — ¢,n) because the last digit of the base g representation
of any k > n — ¢ is larger than the last digit of the base ¢ representation of n.
Thus, by Lucas’ Theorem, the binomial coefficient (Z) is divisible by ¢. If there is
no multiple of p{* in the interval (1, — ¢q), then by Lucas’ Theorem all the binomial
coefficients (Z) with 1 < k < n/2 are divisible by at least p; or q. Moreover, equality
in Theorem 3.4 cannot hold because p}* divides both p;* and n, and hence g would
not be a prime. []

Corollary 3.6. Let p?j denote the largest prime power divisor of an integer n and
q the closest prime ton. Ifn —q < p?j, then n satisfies Condition 1 with p; and q.

We show a diagram which illustrates the proof of Theorem 3.4. The key is to
split the range of k into two intervals.

n/2 '
& S EEEE: M < pff
k- n—gq @i
pl 2; works
nf2 n=| 1 |n-q
o o
U U k =) 0 k
n—q k
g works

Figure 2: Illustration of the proof of Theorem 3.4.

Note that if n satisfies Condition 1 then at least one of these two primes has to
be a prime factor of n, because otherwise (711) = n is not divisible by either one of
the two primes.

The only remaining cases are those in which n — ¢ > p{* and n is neither a prime
nor a prime power. Let ¢ denote the largest prime smaller than n/2. By analyzing



the integers that are part of these remaining cases, we notice that n usually satisfies
Condition 1 with the pair formed by a prime factor of n and ¢s. If we analyze the
six numbers smaller than 2,000 such that n — ¢ > p}*, we see that the inequality
pi* > n — 2qy holds and ¢, and p; satisfy Condition 1. Table 1 provides evidence
with the only four numbers until 1,000 that do not satisfy Condition 1 with ¢ and p;.
However, the sequence of all such integers is infinite. The On-Line Encyclopedia of
Integer Sequences (OEIS) has accepted our submission of this sequence [4]. These
observations led my investigations towards ¢o, which are described in the following
sections.

Number 126 210 330 630

Prime factorization | 2-3*-712-3-5-7(12-3.5-11[2-32-5-7

q 113 199 317 619

q2 61 103 163 313

n—q 13 11 13 11

n — 2qo 4 4 4 4

(1,n — 4] 2,3,4 2,3,4 2,3,4 2,3, 4

(n—q,n] 62, 63 104, 105 164, 165 314, 315

Pairs that satisfy 1 | 3-61 5-103 5-163 3-313, 5-313, 7-313

Table 1: Information about the four numbers below 1,000 that do not satisfy Con-
dition 1 with ¢ and p;.

4 Bounds for p;°

a;

Before analyzing ¢ and go further, we establish some bounds for p;* assuming that
n—q>pi.

Lemma 4.1. If n is not a prime and n — q > p}*, then pi* < n/2.

Proof. Using the Bertrand-Chebyshev Theorem we see that n/2 > n —¢q > 0. Also,
n —q > p;'. Therefore, n/2 > pi. O

We can find an even lower bound for p*. In 1952, Nagura [22] showed that if
n > 25 then there is always a prime between n and (1 + 1/5)n. Therefore, we find
that 5n/6 < ¢ < n when n > 30.

Lemma 4.2. If n > 30 is not a prime and n — q > pj*, then p{* < n/6.

The proof is the same as the one for Lemma 4.1. In 1976 Schoenfeld [30] showed
that for n > 2,010,760 there is always a prime between n and (1 + 1/16,597)n.
Therefore, we know that if n > 2,010,882 then

Shareshian and Woodroofe [29] checked computationally that all integers smaller
than 10 million satisfy Condition 1, which means that we can apply Schoenfeld’s

bound.



Lemma 4.3. Ifn is not a prime, n > 2,010,882 and n—q > p;*, then p{* < n/16,598.
The proof follows the same steps as the previous two lemmas.

Proposition 4.4. Let n = p{'m. Ifn > 2,010,882 and m < 16,598, then n satisfies
Condition 1 with p; and q.

Proof. By Schoenfeld’s bound we know that n — ¢ < n/16,598. If m < 16,598, it
means that pi" > n/16,598. Thus, p;* > n —q and, by Theorem 3.4, ¢ and p; satisfy
Condition 1. O

a;
5 Whenn—q>p" ' >n—2q
In this section we analyze the integers n that satisfy the inequalities
n—q>p>n-—2g,

and we prove some cases in which n satisfies Condition 1 with p; and ¢;. The
fact that we are considering n — 2¢y comes from the base ¢y representation of n.
We distinguish between two cases: when k < ¢ and when £ > ¢,. The base ¢
representation of n is 2- ¢y + (n — 2¢2). The base ¢y representation of k is 0 - gs + k if
k< qyand 1-qy+ (k— qo) if K > ¢2. Hence, there is no need to analyze the interval
(n—2qs, q2] because for all k such that n—2¢s < k < ¢o, we can use Lucas’ Theorem
to see that the binomial coefficient (Z) is congruent to 0 modulo ¢y. Therefore, we
only need to consider the interval (g2, n/2].

5.1 Ifn is odd

It is important to remark that if k£ is not a multiple of p;* then by Lucas’ Theorem
(Z) is divisible by p;. Therefore, we only have to analyze the integers in (g2, n/2]
that are multiples of p{". We then claim the following:

Theorem 5.1. If n is odd and n — q > p{* > n — 2qq, then n satisfies Condition 1
with p; and qs.

Proof. Since n is odd, n/2 is not an integer. Hence it is enough to prove that there is
no multiple of py? in the interval (¢,,n/2). We will prove this by contradiction. Thus
assume that ¢, < Apg” < n/2 for some integer \. Then X\ > (m — 1)/2 if n = mpy’,
since ((m —1)/2)py" is the largest multiple of pg” that is smaller than n/2 (note that
m is odd because n is odd). Now from the inequality ((m — 1)/2)pg? > g, it follows
that n — pg? > 2¢, and this contradicts the assumption that n — 2¢, < pg”. O]

5.2 If n is even and p; is not 2

Lemma 5.2. If n is even and p, # 2, then the only multiple of py® in the interval
(gr,m/2] is n/2.



Proof. Since p, # 2, the integer n/2 is still a multiple of pg?. Hence we may write
n/2 = Apy® for some integer \. If there is another multiple of pg* between ¢, and
n/2, then we have ¢, < (A — 1)pg® < n/2, and this implies that n/2 — py* > q,.
Hence n—2q, > 2pg* > pg?, which is incompatible with our assumption which states
that n — 2¢, < pqg”. ]

Theorem 5.3. If 2% is a prime power divisor of n and 2% satisfies
n—q>2%>n—2q,
then n satisfies Condition 1 with 2 and qs.

Proof. The integer n has the factor 2% in its prime factorization, which means that
n/2 has the factor 227!, The base 2 representation of n has one more zero than
the base 2 representation of n/2, which means that by Lucas’ Theorem (732) is

congruent to 0 modulo 2¢. By Lemma 5.2, n/2 is the only multiple of 2% in the
interval (g, n/2]; hence the proof is complete. ]

5.3 If n is even and p; is not 2

By Lemma 5.2 we only need to consider the central binomial coefficient (n%), be-

cause the only multiple of pi* in the interval (g2, n/2] is n/2. We claim the following
proposition, using Legendre’s Theorem for its proof.

Proposition 5.4. The prime factor p; divides (n72) if and only if at least one of
the fractions |n/p®| with o > 1 is odd.

Proof. When we compare vy, (n!) and v, ((n/2)!) we see that, for each «,

=25

if |n/p®] is even. If [n/p®] is even for all v, we conclude that v,, (n!) = 2v,,((n/2)!),
and hence p; does not divide (). However, if [n/p®] is odd, then

n/2
2
LEJ =92 \‘%J +1.
p* p*
Therefore, v, (n!) is greater than 2v,, ((n/2)!). O

Corollary 5.5. Let Sy, (n) be the base p; representation of n. If n=%) s odd then

p—1
p; divides (n%) )

Corollary 5.5 is shown using Legendre’s formula.

Corollary 5.6. If any of the digits in the base p; representation of n/2 is larger

than |p;/2], then the binomial coefficient (732) is divisible by p;.

Corollary 5.7. If one of the digits in the base p; representation of n is odd, then

the prime p; divides (n7/‘2)



Proof. The proofs of Corollaries 5.6 and 5.7 are similar. If a digit of n/2 is larger
than |p;/2], when we add n/2 to itself in base p; to obtain n there at least one carry.
Similarly, if n has an odd digit in base p;, it means that there has been a carry when
adding n/2 and n/2 in base p;. By Kummer’s Theorem with k& = n/2, if there is
at least one carry when adding n/2 to itself in base p;, then p; divides the binomial

coefficient (n%) . O

i

log(n)
Corollary 5.8. prbog(pi)J >n/2 and n —q > pi > n — 2qq, then p; divides (n%)
and therefore n satisfies Condition 1 with p; and g.

Proof. The largest  such that p¢ < n < p¥*t! is LMJ Therefore, in Proposi-

log(p;)
tion 5.4, « is bounded by 1 < a < L%J. Also note that o > a;, where a; is the
log(n)
exponent of p;. If ]oih’g(pi)J > n/2 then |n/p®| = 1. Because this is odd, p; divides
(n72) by Proposition 5.4. O

5.4 Some cases in which 2n implies n

In this section we denote by pj' and g, any prime power factor of & and the largest
prime smaller than k respectively. For integers that satisfy the inequality n — ¢ >
pi* > n—2qs, we observe three cases in which if 2n satisfies Condition 1 and p;,, # 2,
then n also satisfies Condition 1. Note that since p; is not 2, then p;, = p;,. Also,
42,, = qn. Therefore we claim:

Claim 5.9. If 2n satisfies the inequality 2n — 2qs,, < 2n — qo, < pZi”, then n
satisfies Condition 1 with p; and q.

Proof. We rewrite the inequality above as n — ¢, < 2(n — ¢,) < 2n — @, < pf:
Therefore, n — ¢, < p?i", and, by Theorem 4.2, n satisfies Condition 1 with the
primes p; and q. 0

Claim 5.10. If 2n satisfies the inequalily 2n — qap, < 2n — @0, < p?;i", then n
satisfies Condition 1 with p; and q.

Claim 5.11. If 2n satisfies the inequality 2n — 2q,,, < p?,:i" < 2n — qon, then n
satisfies Condition 1 with p; and q.

The proofs of Claims 5.10 and 5.11 follow the same steps as the one of Claim 5.9.

6 Large multiples of n satisfying Condition 1 with
prime gap conjectures

After studying these inequalities, I considered using prime gap conjectures to study
Condition 1 for large integers. In this section we always denote the t** prime as p;.

10



6.1 Cramér’s Conjecture

Conjecture 6.1. (Cramér [13]) There exist constants M and N such that if p, > N
then pri1 — pr < M(log p,)?.

We claim the following:

Proposition 6.2. If Cramér’s conjecture is true, then for every positive integer n
and every prime p dividing n, the number np* satisfies Condition 1 for all sufficiently
large values of k.

Proof. Let M and N be the constants given by Cramér’s conjecture. Given a positive
integer n which is not a prime power and a prime divisor p of n, we write n = mp®
where p does not divide m, and compare M (log nx)? with p®r as z goes to infinity.
Using L’Hopital’s rule, we find that

l P (Hop.) 1 pna I P

im ——— = (Hop.) lim ——— = lim ————

z—oo M (log nx)? P oo 2Mnlognx  a—oo 2M log nx
= (Hop.) lim 2% — im 20 =

Therefore, p®z is bigger than M (log nx)? when x is sufficiently large. Hence we can
choose any k large enough so that p®** > M (log np*)? and furthermore, if ¢ denotes
the largest prime smaller than np*, then ¢ > N. Now, if 7 denotes the smallest prime
larger than np*, we infer that, if Cramér’s conjecture holds, then, since ¢ > N,

np* —q <r—q < M(logg)®.
Moreover
M (log q)* < M(lognp™)? < p***.

Hence np* — ¢ < p®** and, since p®** is the highest power of p dividing np*, Theo-
rem 3.4 implies that np* satisfies Condition 1. O

Cramér’s conjecture also proves the following proposition:

Proposition 6.3. Let m denote the number of distinct prime factors of n. If
Cramér’s conjecture is true and n grows sufficiently large keeping m fized, then
n satisfies Condition 1.

Proof. If n has m distinct prime factors, we define the average prime factor of n
as {/n because if n were formed by m equal prime factors each one would equal
t/n. Tt is true that /n < p?j , where p?j denotes the largest prime power divisor
of n. Hence we must see if M(logn)? < %/n for large values of n. We apply again
L’Hopital’s rule to compute the limit

lim \/ﬁaz

z—oo M (lognx)?

and we obtain that M (logn)? < %/n holds when n is sufficiently large. O

11



6.2 Oppermann’s Conjecture
A weaker conjecture on prime gaps by Oppermann states the following:
Conjecture 6.4. (Oppermann [25]) For some constant M, py1 — p; < M+/Py.

Proposition 6.5. If Oppermann’s conjecture is true, then for every positive inte-
ger n and every prime p dividing n, the number np® satisfies Condition 1 for all
sufficiently large values of k.

Proof. The proof is similar to the proof of Proposition 6.2. We apply L’Hopital’s
rule once to solve the indetermination in

lim 2%

im

z—oc0 My/nz’

where p® is the highest power of p dividing n. Since the ratio goes to infinity our

inequality is satisfied, and by choosing z = p* with %k large enough the proof is
complete. n

6.3 Riemann’s Hypothesis

The following conjecture is a consequence of Riemann’s Hypothesis.

Conjecture 6.6. (Riemann [14]) For some constant M, p;y1 — pr < M (log pr)v/P-
This bound can be used to prove the following:

Proposition 6.7. If Riemann’s conjecture is true, then for every positive integer n
and every prime p dividing n, the number np* satisfies Condition 1 for all sufficiently
large values of k.

Proof. We apply again L’Hopital’s rule to solve the indetermination in
I P
im
z—oo M (log nx)/nz

The limit goes to infinity and hence, by choosing # = p* with % large enough,
the proof is complete. O

Due to the similarities of the inequalities, we skip the calculations of Propositions
6.5 and 6.7.

7 Using other primes to satisfy Condition 1

In Sections 3 and 5 we analyzed inequalities involving n — ¢ and n — 2¢,. This made
us realize in general, for any positive integer d, we can study the function n — dqq,
where g4 refers to the largest prime smaller than n/d (when writing ¢; we omitted
the subindex 1).

We consider the integers n that do not satisfy the inequality pj* > n — 2ps.
Up to 1,000,000 there are only 88 integers that do not satisfy p{* > n — 2p,. The

12



On-Line Encyclopedia of Integer Sequences (OEIS) has accepted our submission of
these numbers [5]. Up to 1,000,000, there are 25 integers that do not satisfy the
inequality p;* > n — 3ps; 7 integers that do not satisfy the inequality p{* > n — 4py;
5 integers that do not satisfy the inequality p;* > n — 5ps, and only 1 integer that
does not satisfy the inequality p;* > n — 6pg. Figure 3 shows the number of integers
up to 1,000,000 that do not satisfy the inequality p* > n — dpy depending on d.

Nl.élsh of int. that do not satisfy the inequality until 1,000,000

80 -

70 F

Number of integers
L = U =3
o o o (=]

[
o
T

[
o
T

I--
2 3 4 5

d

o

Figure 3: Number of integers up to 1,000,000 that do not satisfy the inequality
pyt > mn — dpg as a function of d.

We also observe that the function n — dg, tends to 0 as d increases, which means
that it is likely that at some point the inequality is achieved. This is explained with
the properties of the function n/d, which behaves in the same way as the function
1/x except for the constant n. As d grows large, the difference between n/d and
n/(d + 1) grows smaller. Hence, the closest prime to n/d is the same one for all
the n/d that are close. Then, when d increases, p; decreases much more slowly, and
because it is multiplied by d, which grows linearly, dp; tends to n. Figure 4 shows
how n — dpy tends to 0 as d increases taking 330 as an example. All the points
correspond to values of d such that py satisfies Condition 1 with another prime.
Note that if n — dpy is exactly zero then d is a divisor of n such that n/d is a prime.

Then there are two conditions that we use for p; and ¢4 to satisfy Condition 1.

Condition 2. For any integer n to satisfy Condition 1 with p; and q4 we require
that pi" >n —dqq and n — dgy < qq.

When £ is larger than p;*, we rely on the fact that £k is larger than n — dgqy
to justify that the binomial coefficient (Z) is divisible by g4 using Lucas’ Theorem
unless if k is a multiple of g;. However, if n — dg, were larger than ¢4, when writing
n in base gq the inequality pi" > n — dgg would not hold.

Lemma 7.1. Ifn > 30 and d < 5, then n — dqq < qq.

13
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Figure 4: Decrease of n — dp, for n = 330.

Proof. By Lemma 4.2, if n > 25, 5n/6d < g4 < n/d. Therefore, n/6 > n — dqq.
Now we need to show that gq; > n — dqq. It follows that n < ¢4 + dg; and thus
n < qq(1 + d). Using Lemma 4.2,

Sn(d + 1
n<%<qd(1+d).

Therefore, 6d < 5d + 5 and we get that d < 5. O
Lemma 7.2. If n > 2,010,882 and d < 16,597, then n — dq, < qg.

The proof is the same one as the one for Lemma 7.1, except that by Lemma 4.3,
the initial inequality is 16,597n/16,598d < ¢4 < n/d.

Corollary 7.3. The integer |d/2] qq is the largest multiple of qq smaller than or
equal to n/2.

Proof. We apply the definition of ¢; to obtain that n > dgg. Assume, towards a
contradiction, that n > g4(d+1). By Lemmas 7.1 and 7.2, n—dgy < qq and therefore
n < qq¢(d+ 1). This contradicts the inequality n > g4(d + 1). O

7.1 The 3-variation of Condition 1

In Section 5 we proved that many integers that satisfy the inequalities
n—q>pd>n—2gq

also satisfy Condition 1 with p; and ¢o. Although this does not fully answer the
main question of this essay, the proofs explained in Section 5 lead to the results

14



of this section, which we consider to be relevant. Thus, in this section we prove
some cases in which an integer n satisfies the 3-variation of Condition 1 (as stated
in Definition [1.2]in the Introduction).

Theorem 7.4. If an even integer n satisfies the inequality n — q > pi* > n — 2qy
and p; # 2, then n satisfies the 3-variation of Condition 1 with p;, g2 and any prime
that divides (n%)

Proof. In Section 5.2 we show that if n satisfies the inequality n —q > pi* > n — 2¢y
and p; is not 2, the only binomial coefficient we could not prove that was divisible
by either p; or ¢ is the central binomial coefficient. Thus, for such n to satisfy the
3-variation of Condition 1 it suffices to add an extra prime that divides the central
binomial coefficient. O

Regarding the two highest prime powers of n

For any n, let ¢ be the largest prime smaller than n, let p; be the prime factor of n
such that p?j is the largest prime power of n, and let p, be the prime factor of n such
that p¢" is the second largest prime power divisor of n. We then claim the following:

Proposition 7.5. If p}’p® > n/6, then n satisfies the 3-variation of Condition 1
with pj, pr and q.

Proof. By Lucas’ Theorem, for any k such that 1 < k£ < p(;j , the binomial coefficient
(Z) is divisible by p;. For the same reason, by Lucas’ Theorem, for any %k such that
n—q < k < n/2 the binomial coefficient (Z) is divisible by p;. Then we need a prime
that divides at least the binomial coefficients (Z) with p?j < k <n — g such that k&
is a multiple of p?j . Now take p, as the third prime such that n might satisfy the
3-variation of Condition 1 with p;, ¢ and p,. For the same reasoning, in this interval
we only consider the & that are multiples of p?~. The only £ such that the binomial

coefficient (Z) is not divisible by either p; of p, are those £k that are multiples of both

p?j and p? . The least k that is multiple of both prime powers is p}’p®. By Lemma
4.2 we know that n — ¢ < n/6. Therefore, if p?jpffr > n/6, this integer is larger than

n — ¢ and hence it is not part of the interval that we are considering. Thus, all the
k lying in the interval p;j < k < n — q are such that the binomial coefficient (Z) is
divisible by either p; or p,.

Moreover, using the bounds described in Lemma 4.2, we use the primes p;, ¢
and qq4 for n to satisfy the 3-variation of Condition 1.

Proposition 7.6. Let q; be the largest prime smaller than n/d. If g3 > n/6, then
n satisfies Condition 1 with p;, q¢ and q4.

n

Proof. The prime ¢ fails to divide (k) only if 1 < k < n — ¢. Similarly, by Lucas’
Theorem, the prime ¢4 fails to divide (Z) only if cqqy < k < cqq+ (n—dqq), where cqq
refers to any positive multiple of ¢4. This is because n — dgy is the last digit of the
base g4 representation of n. But because by assumption g; > n — p;, the intervals

[1,n — ¢] and [cqa, cqq + (n — dgq)] are disjoint. O
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8 Bounds on the number of primes needed to
satisfy the IN-variation of Condition 1

The proofs obtained for the 3-variation of Condition 1 and the inequalities for n—dg,
in Section 7 led us to consider the N-variation of Condition 1, because this is also
relevant to the main question of the essay. For each positive integer n, we are
interested in the minimum number N of primes such that n satisfies the N-variation
of Condition 1. In this section we provide four upper bounds for N. Because in all
four bounds N is a function of n, the suitability of each bound depends on n; some
bounds may be better for certain values of n.

The proofs of the 3-variation of Condition 1 led my investigations towards finding
upper bounds on the minimum number N of primes needed so that we can prove
that all positive integers satisfy the N-variation of Condition 1.

8.1 First upper bound with prime factors of n

Claim 8.1. If n has m different prime factors, then these prime factors satisfy the
m-variation of Condition 1.

Proof. The proof is similar to the one described when n is a product of two prime
powers. The smallest integer divisible by all the m prime powers of n is n. The base
p representation of all k£ < n has less zeroes than the base p representation of n for
at least one prime factor p of n. Using Lucas’ Theorem, Claim 8.1 is proven. O

8.2 Second upper bound with d

Proposition 8.2. Let g, be the largest prime smaller than n/d and let pi* be any
prime power divisor of n such that pi* > n — dqq. If pj* > qq4 +n — dqq, then n
satisfies the N-variation of Condition 1 with N =2+ |d/2].

For the subsequent proofs we use the following definition:

Definition 8.3. Let cgy be any multiple of ¢; and let 5 be n — dgg. We call the
interval [cqq, cqq + (] a dangerous interval.

Note that for every time that p{* falls into a dangerous interval we need to add
an extra prime.

Proof. By Lucas’ Theorem all the binomial coefficients (Z) are divisible by ¢, except
if k£ lies in a dangerous interval. In these dangerous intervals we only consider the
integers that are multiples of pi" because if k is not a multiple of p;", then by Lucas’
Theorem the binomial coefficient (Z) is divisible by p;. Because p{* > [ we know
that in any dangerous interval there is at most one multiple of p*. This means
that the worst case is the one in which there is a multiple of p{* in every dangerous
interval until ¢ < |d/2]. Thus we need at most one extra prime each time that there
is a multiple of p{* in a dangerous interval. H

Claim 8.4. If d < 5 and p}* > qq4 + B, then n satisfies Condition 1 with q; and p;.
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Proof. 1f d < 5, then |d/2] equals either 1 or 2. If it equals one, then by assumption
pi* > qq + [, which means that no multiple of p;* falls in any dangerous interval
until n/2. If d equals 2, then we need to check that 2p{" > 2¢,;+ /5. This means that
we want to see that the next multiple of p/* does not fall into the second dangerous
interval. The minimum value of p{* such that our assumption p;* > g4 + ( holds is
qa + B + 1. The next multiple of ¢4 + 8 + 1 is 2¢q; + 28 + 2. This last expression is
greater than 2¢; + 3, which means that 2p}* does not fall into the second dangerous
interval. O]

8.3 Third upper bound

In this subsection we consider the generalization of the cases that have been discussed
so far. Let d be a natural number and let g4 be the largest prime number smaller or
equal to n/d. Let B denote n — dqq, let pj* be any prime power divisor of n, and let
v = pi* — cqq. In Sections 8.3 and 8.4 we do not consider the cases in which ¢4 = p;
because the proofs hold by taking any other prime factor of n that is not p;.

Theorem 8.5. For all ¢ > 0, n satisfies the N-variation of Condition 1 with

Y44 ’

v-2+|

where k = LLJ .
2qq7y

Proof. We first consider the case in which p" = ¢4 + v and v < . This means
that p;* falls in the first dangerous interval. Any subsequent multiple of p}* is of the
form rpf" = rqs + rv. Note that we only need to analyze rv because this is what
determines if pj* falls in a dangerous interval.

Lemma 8.6. The prime power divisor p;* falls into a dangerous interval if and only
if ry (mod gqq) < 5.

The proof of Lemma 8.6 comes from the definition of a dangerous interval (see
Definition 8.3). Now consider all the possible values of 7y modulo g4 from ~ until
~vqq. Note the following:

Remark 8.7. The numbers v and qq are always coprime.

For the proof of the remark it suffices to see that ¢, is a prime number. This
means that all the numbers from 1 to g; — 1 appear exactly once in the interval
[7,vq4). Therefore, by Lemma 8.6 the number of integers that fall into a dangerous
interval are those such that ry (mod ¢;) < . By Remark 8.7 we know there are
only § such integers in the interval [y, yqq). Thus, if yqq4 > d/2, we only need 2 + 3
primes. We add 2 to 8 because we also need to count ¢; and p;. Note that this is
an upper bound and therefore in some cases several of the primes that we use for
the dangerous intervals are repeated.

Now we consider the general case in which p}* = cqq + 7. We need to count the
multiples of yg; from cqg until kygy (k has the same definition as in Theorem 7.1).
This gives us the bound stated in Theorem 8.5. O
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Note that, in Theorem 8.5, v cannot be 0 because otherwise by definition p;
would be equal to g4. This is a case that we are not considering (see the beginning
of Section 8.3).

8.4 Fourth upper bound with Diophantine equations

We consider the Diophantine equation p;"k; — gqar = 6, where 0 < § < . Let x = ky
and let ¥y = a. The general solutions of these Diophantine equation depending on
the particular solutions x; and y; are well-known:

T =1T1 —Tqq
Yy =y +rpy’

Let 3(9) denote the largest y < |d/2]| depending on §. Note that for all y;() we
can add or subtract a certain number of p}* until we reach g(9).

Theorem 8.8. All integers n satisfy the N-variation of Condition 1 with

B A
N=21 Z V(f)
5=0

b;

J§2+(6+1) L%J

Proof. Note that the solutions of the Diophantine equation correspond to all the
cases in which a multiple of p{* falls in some dangerous interval. It is known that a
Diophantine equation az + by = ¢ has infinitely many solutions if ged(a, b) divides c.
Therefore, for all § such that 0 < § < 3 there exists a particular solution y;(9) for
y in Equation 6 because ged(p;?, gs) = 1 (recall that we do not consider the case
in which p; = ¢q). Thus, for each (d) we count the number of multiples of p{* in
the interval [1,9(d)]. This is the number of times that p{* falls into a dangerous
interval and hence we need to add an extra prime. We also add 2 to count p; and p;.
Moreover, note that by definition g(§) < |d/2]. This gives us the expression stated
in Theorem 8.8. O

9 Computational results

In order to obtain more information about which primes make n satisfy Condition 1
we wrote some C++ programs. The results are presented in this section.

9.1 When we fix a prime

In the original article of Shareshian and Woodroofe [29], the authors computed the
percentage of integers below 1,000,000 that satisfy Condition 1 if p; is fixed to be 2,
and they found a percentage of 86.7%. We compute the percentage of integers until
10,000 that satisfy Condition 1 fixing one prime to be not only 2 but also 3, 5,
7 and 11. Table 2 shows the number of integers below 10,000 that do not satisfy
Condition 1 fixing one prime to be 2, 3, 5, 7 and 11 respectively. It also shows the
percentage of integers satisfying Condition 1 fixing each prime. Figure 5 shows the
percentage of integers until 10,000 that satisfy Condition 1 depending on the fixed
prime.
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Fixed prime 2 3 ) 7 11

Number of integers not satisfying 1 | 1144 1633 2626 3259 4180

Percentage of integers satisfying 1 | 88.56% | 83.67% | 73.74% | 67.41% | 58.20%

Table 2: Number of integers that do not satisfy Condition 1 and percentage of
integers that do satisfy Condition 1 fixing one prime until 10,000.
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Figure 5: Percentage of integers until 10,000 that satisfy Condition 1 fixing one
prime to be 2, 3, 5, 7 and 11 respectively.

9.2 How many pairs of primes satisfy Condition 1

Given a positive integer n, multiple pairs of primes p; and p, can satisfy Condi-
tion 1. We have found computationally all the possible pairs of primes that satisfy
Condition 1 with a given n < 3,000. This findings helped us conjecture and then
prove Theorem 3.4. Figure 6 shows the data for n up to 3,000. We note four main
tendencies. The one with the greatest slope corresponds to the one formed with
prime numbers and prime powers. This is explained by Proposition 3.1. Because
only one prime is needed to satisfy the 1-variation of Condition 1 if n is a prime
power, the other prime can be any prime smaller than n. Therefore, this first ten-
dency follows the function f(n) = n/logn disregarding the prime powers [16]. The
second greatest slope is formed with even numbers that satisfy Condition 1 with one
prime being 2. The third one is formed by numbers satisfying Condition 1 with one
of the primes being 3 and the following one with numbers that satisfy Condition 1
with one prime being 5.

In order to fit a function for each curve, we approximated the function n/logn
for each branch using Matlab, and we obtained the following functions:
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Figure 6: Number of pairs of primes that satisfy Condition 1 depending on the
integer n until 3,000.
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Figure 7 shows a plot of each separate branch with its corresponding curve.

10 Multinomials

We also consider a generalization of Condition 1 to multinomials. We investigate
the following condition that some integer n might satisfy:

Condition 3. For a given fized integer m there exist primes p; and ps such that
whenever ky + -+ kyp =n for1 <k <n-—1, (k1 kQ” km) is divisible by either p;
or pa.

A very natural question follows:
Question 10.1. Does Condition 3 hold for all positive integers n?
Here we show that Condition 1 implies Condition 3. We claim the following:

Proposition 10.2. If n satisfies Condition 1 with p; and py, then n also satisfies
Condition 3 with these two primes and any m < n.
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Figure 7: The four branches of Figure 6 separated and fitted with a curve.

Proof. We assume that p; and py satisfy Condition 1 for a given n. We then take
the multinomial

n B n!
ki koo k) Eilkole k!
with the same n and any m < n. We see that we can decompose the multinomial
into a product of m binomials:

n! ~nmn—1)--(n—Fk +1)
el k! Iyl '
! T

()1

Because by assumption (Z:) is divisible by either p; or ps, the previous multino-
mial coefficient is also divisible by at least one of them. This decomposition can be
used for any m and the first binomial coefficient can be (,Z ), k; being any of the k
in the denominator. O

Therefore, if Condition 1 is proven for binomial coefficients, then it automatically
holds for multinomial coefficients.
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11 Conclusions

In this work we have obtained results that significantly contribute to the unsolved
conjecture that motivated our research (see Condition 1 in the Introduction), which
was proposed in a recent article by Shareshian and Woodroofe [29]. We have found
many instances in which the conjecture holds, namely a positive integer n satisfies
Condition 1 at least in the following cases:

e When n is a prime power.
e When n is a prime power plus one.
e When n is a product of two prime powers.

e When n satisfies the inequality n — ¢ < pj*, where ¢ denotes the largest prime
smaller than n and p;* is any prime power factor of n.

e When n satisfies a similar inequality regarding the largest prime g, smaller
than n/2.

Using these ideas, we have also found some cases in which if 2n satisfies Con-
dition 1 then so does n, and we have used prime gap conjectures by Cramér, Op-
permann and Riemann to prove that every integer n has infinitely many multiples
that satisfy Condition 1. Moreover, we have considered variations of Condition 1
involving more than two primes and we have provided four different upper bounds
on the minimum number of primes N needed in order to prove that all positive
integers satisfy our /N-variation.

We have written several C++ programs which have allowed us to observe what
percentage of integers satisfy Condition 1 if we fix one prime, and also to obtain all
pairs of primes that make a given n satisfy Condition 1. Finally, we have generalized
Condition 1 to multinomials and have proven that if Condition 1 holds for binomials,
then it also holds for multinomials.

After having obtained all these research results, we have analyzed how much we
have contributed to the open problem addressed in this work. Up to 1,000,000, there
are less than 50 numbers that do not fit into any of the cases that we have solved.
We consider this to be a very substantial outcome. Moreover, our proofs concerning
prime gap conjectures potentially have stronger implications, as we believe that
we are very close to proving that all integers larger than a fixed constant satisfy
Condition 1.

Also, our inequalities n — dgq < p{* for various values of d, where g; denotes
the largest prime smaller than n/d and p;* is the largest prime power divisor of n,
can also lead to better results, and we are convinced that further research in this
direction would solve even more cases.

In conclusion, our proofs substantially contribute to a possible solution to the
open problem proposed in [29], which has been the main objective of this essay, and
we believe that we found ideas that could be studied in greater detail and lead to
sharper results.
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12 Appendix

12.1 Sequences of integers that do not satisfy the
inequality for n — dpg

In Section 7 we mentioned that the set of integers that do not satisfy the inequality
for n — dpg becomes smaller when d increases. In this appendix we display the first
terms of the sequence of integers that do not satisfy the inequality n — dpy; < pi"
when d equals 1, 2, 3, 4 and 5. The On-Line Encyclopedia of Integer Sequences has
published our sequence in the cases when d equals 1 and when d equals 2. References
are omitted in this anonymous versions of the essay.

When d = 1: 126, 210, 330, 630, 1144, 1360, 2520, 2574, 2992, 3432, 3960, 4199,
4620, 5544, 5610, 5775, 5980, 6006, 6930, 7280, 8008, 8415, 9576, 10005, 10032,
12870, 12880, 13090, 14280, 14586, 15708, 15725, 16182, 17290, 18480, 18837, 19635,
19656, 20475, 20592, 22610, 24310, 25296, 25300, 25520, 25840, 27170, 27720, 27846,
28272, 28275, 29716, 30628, 31416, 31450, 31464, 31465, 32292, 34086, 34100, 34580,
35568, 35650, 35670, 35728, 36036, 36432, 37944, 37950.

When d = 2: 3432, 5980, 12870, 12880, 13090, 14280, 14586, 20475, 28272,
28275, 31416, 31450, 34580, 35650, 39270, 45045, 45220, 72072, 76076, 96135, 97812,
106080, 106590, 120120, 121992, 125580, 132804, 139230, 173420, 181350, 185640,
191400, 195624, 202275, 203112, 215050, 216315, 222768, 232254, 240240, 266475,
271320, 291720, 293930, 336490, 338086, 350064, 351120, 358150, 371280, 388455,
408595, 421600, 430236, 447051, 447304, 471240, 480624.

When d = 3: 3432, 31416, 34580, 35650, 39270, 96135, 121992, 125580, 139230,
215050, 222768, 291720, 358150, 388455, 471240, 513590, 516120, 542640, 569296,
638001, 720720, 813960, 875160, 891480, 969969, 1046175, 1113840, 1153680, 1227600,
1343160, 1448655, 1557192, 1575860, 1745424, 1908816.

12.2 C++ code for finding all the possible pairs

Here we provide the C4++ code that we used to find all the possible pairs of primes
that satisfy Condition 1 for each integer. This code has been used to plot Figure 6.

23



1 40
2 41 int main(){
3 42 afstraam cout|"HowManyPrimes. txs"):
4 43 int
bl 44 gln »>
E 45 ¥ = we > im, krue);
7 26 primers r <unsigned long long int> (};
] 4T factora ~ctor <ve cimsigned long leng intxs (z);
g 48 factorarepet = wecto rector tunsigned long long ints>> |
10 uailng namespace std; 49 garbell () :
11 50 vector <wvector <Biglntegec: = (nl;
1z veator <bool> w; 51 I push bas i
13 - cunsigned long lomy ints primera; 52 [1].push bask
14 cunalqned long lomg int> > factora; 53 Bing ,;...,..l_l.,.;;k (1
15 wunsigqued long long int> » factorarepet 54 for(unaigned long long int 1=2; icn; 1+
1€ veotor <vector <Biglntegec> > binp; 55
17 58 l binala].pusk back(llr
e Hstring int2stzing(int o} [ 5T for (msigned long long int 7=1; qeu; 9+=) |
15 stringetreas a; 58 bino[i].push_back (bina[i-1] [§-1)+binn[1-11 (413
20 = AL oni . N s i i 4 5 T
a1 returnis.=toill; 50 1
2z al binal1] .push back(l);
22 [
24  Hwold garbell ()| (=] for(unaigned leng long int 1=2; i:n; 1+=
25 [J]=false; (13 coute<"n = iy
26 =falss; a5 unsigned long long int sa = O;
27 sror=[0]. push back (2] ; &6 mmsigned long long int Bb
28 factors(1].posh back(l); &7 unaigned long long int pl primeralaal ;
2% H for {unsigued long long int 1=3; lov.alzel|l; L1++)( a8 unaigned long long int p2 = primers|bb]:
o ifiw[i]){ &3 unsigned long long int res = O
a1 primers push back{i}; T int howmany a
£ factors(1] .push_back(i}; T1 whila {res==0) |
33 B for{uneigned long long int b=2; hvi<v.size(); h+s)( T2 atring ppl = int2string{pl) ;
44 v[i*h] = @5 T3 BigInteger pppl =stringTeBiginteger (ppll;
as factors[i1%h] .push back(il; T4 string pp2= intZatsingipd);
EL I 75 Biglntager pppl —atringToBiglinteger(ppld|;
a7 T 5 for (unsigned leng long int g=1; ge=1/2; g++) |
a8 F
IT H if ([ (banz[i] [g]3pppl!=l)landibinoli] [g] %ppp2!=01 |
TE Tes 1:
79 break;
80 r
81 I
Bz =] 1f|res==0) {
83 conte"FRIMES: Mevpppled” "ecppplecandl ;
B4 howmany++;
B5 ]
B8 L if | ((bbt1==primera.sizel) |and{as+]l==primer=.size()-1))oc{prinec=[aa+l]==i}]{
T res=1;
8B F ¥
89 H aloa|
s o if | (bbt1=—primer=.size())oc(primec=[bb+l]>i)}
51 ast+;
= pl = primersfaa];
k] bk = aa+l:
G4 pl = primers(bb];
B5 rea = 0;
&5
o7 =] else|
1] bhi+;
59 P2 = primec=[bb];
10D rea = 0;
101
102 F
1wz -
10% agutL" "< howmany<<endl ;
105 I }
1da
107

The code for the data on how many integers satisfy Condition 1 if we fix one
prime is quite similar and is therefore not included.

12.3 Webpage about this problem

As explained in the Introduction, we have created a webpage in which all the con-
cepts and results of this work are explained. From this website it is possible to
download the C++ codes that we have used. The website, entitled Number Theory
and Group Theory, also includes other concepts and programs regarding number
theory and group theory. We wanted all these C++ codes to stay available to ev-
eryone interested, because they are potentially useful mathematical tools for anyone
who wishes to continue investigating this problem or any related problems. The
URL of the website is https://numbertheoryandgrouptheory.yolasite.com/.
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https://numbertheoryandgrouptheory.yolasite.com/

[ Number theory and Gro. x
< C (0 & Esseguro | https//numbertheoryandgrouptheory.yolasite.com Q& ‘&‘

HOME  THE AUTHOR

NUMBER THEORY AND GROUP THEORY

CONCEPTS AND C++ PROGRAMS
In this website you can find explanations about congruences, the factorial, padic numbers, binomial and multinomial coefficients, little Fermat's

Theorem, generators of a group and how to find primiive roots, among other materials

Sz Sestenn

[ Number theory and Gro: X
< C O | @ Esseguro | https//numbertheoryandgrouptheory.yolasite.com/Binomials.php Q & f}‘

HOME  THE AUTHOR

NUMBER THEORY AND GROUP THEORY

BINOMIALS

Binomial coefficients can be written as C(nk) and they expr
disregarding the order pick. They can be computed using the expression C(n.k) = n!/k!(n—k)!, which uses the factorial function. Binomial
coefficients also appear in polynomial expansions, as Newton explained in the binomial theorem. Moreover, they can be placed into a triangular
array known as Pascals Triangle. This disposition follows the relationship C(n,k) + C(n,k+1) = C(n-+1, k-+1), which means that any term in the

<5 the number of ways of choosing k out of n items without replacement and

triangle is equal to the sum of the previous two terms.
In order to compute binomial coefficients, it s not advised to use the factorial function, because numbers become too large very quickly. Instead.
binomial coefficient

position in the

we can use Pascal’s Triangle since it only requires the addition of numbers. Here we provide the code for computing a
s equal to the number that is placed in the o row and the

using Pascal's Triangle. Note that the binomial coefficient C(n.k)
row,
Binomial.tst
Kb
Type : txt

Here you can see an example of the output of the code.

It is interesting to analyze Pascal's Triangle a little bit more. The following picture illustrates the triangular array, in which you can observe that

each term equals the sum of the previous two terms.

B Number theory and Grol X
< C (0 & Esseguro | https;//numbertheoryandgrouptheory.yolasite.com/An-open-problem.php Q & ‘fk‘

TH

HOME

NUMBER THEORY AND GROUP THEORY

AN OPEN PROBLEM
In this section and other sections of this page we will analyze an open problem in number theory regarding binomial coefficients. We examine the

following condition:

Condition 1. For a positive integer , there < 1 then the binomial coefficient C(n/k) is divisible by at least

prime p and r such that if 1 <

oneof porr.

allintegers n?

Then a very natural question follows: does Condition 1 hol
We can visualize Condition 1 using Pascal's Triangle. We fix some n and then we look at the n row of Pascal's Triangle. We want to see if it s

true that we can find two primes p and r such that if we paint the multiples of p in the n™® row with one color and the multiples of rin the i
in the o row are painted either with one of the colors, the other, or both (ommiting the ones in

2 (blue) and r=7 (pink)
[] muttiples of 2

multiples of 7

row with another color, then all the num|

the edges). The following picture illustrates this explanation with n=14, p:

Pascal’s Triangle

. .18 78 .2
— 1 91 1001 3003 [3432] 3003 1 [36a] |91
11 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
560 1820 4368 8608 11440 12870 11440 8608 4368 1820 560 120 16 1
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/ [ Number theory and Gro. X\ ]

< C (O & Esseguro | https;//numbertheoryandgrouptheory.yolasite.com/Fixing-one-prime.php

NUMBER THEORY AND GROUP THEORY  rove meauor

FIXING ONE PRIME

Regarding the problem explained in the section ”An open problem”, we compute the percentage of integers until 10,000 that satisfy Condition 1
fixing one prime to be 2, 3, 5, 7 and 1x. Here we provide the code that returns how many integers smaller than n do not satisfy Condition 1 if we
fix one prime. It is possible to change the fixed prime, named 22 in the code, by just changing it in the code (note that if we want one prime to be
2, then aa has to be o because it is the o™ prime. 3 is the 1% prime, and so on. Also, we use the Biglnt library for large numbers that can be
downloaded in the following page: https;//mattmccutchen.net/bigint/.
fixingp.txt

/ Size : 2.98 Kb

2 Type:uxt
The following table shows the number of integers below 10,000 that do not satisfy Condition 1 fixing one prime to be 2,3, 5,7 and 1r

respectively. It also shows the percentage of integers satisfying Condition 1 fixing each prime.

Prime 2 3 5 7 11
Number of integers not satisfying 1 | 1144 1633 2626 3259 4180
Percentage of integers satisfying 1 | 88.56% | 83.67% | 73.74% | 67.41% | 58.20%

‘The following figure shows the percentage of integers until 10,000 that satisfy Condition 1 depending on the fixed prime.
Percentage of integers that satisfy 1 fixing one p until 10,000

8s

atisty 1
.

[} Number theory and Gro: X ' e - X

< C (v | @ Esseguro | https;//numbertheoryandgrouptheory.yolasite.com/All-possible-pairs.php Q& % o

NUMBER THEORY AND GROUP THEORY  rove meauror

ALL POSSIBLE PAIRS

In this section we study given n how many pairs of primes make n satisfy Condition 1. We have found computationally all the possible pairs of
primes that satisfy Condition 1 with a given n < 3000. The following figure shows the data for n up to 3,000.

as0

w w2
g ¥ 8
3 & 8

3

Number of pairs satisfying (1)

We note four main tendencies. The one with the greatest slope corresponds to the one formed with prime numbers and prime powers. This is
explained with the first proposition explained in the section "An open problem’”. Because only one prime is needed to satisfy Condition 1, the

/ [ Number theory and Gro. X\ e —

& C (0 | @ Esseguro | https;//numbertheoryandgrouptheory.yolasite.com/Multinomials.php QN o

NUMBER THEORY AND GROUP THEORY  rove meauTor

MULTINOMIALS

Tn this section we generalize the Condition 1 explained in the section “An open problem” to the multinomials. The multinomial (ks kay.. k) is
defined to be equal o (ks +...+rm)/(kilky!..k!). Therefore, given n, if we want to compute all the possible multinomial coefficients with n in
the numerator we need to introduce the concept of partitions. Imagine we want n to be 5. In how many ways can we add 57
Tt (mes
1442 (m=4)
1+2+2 (m=3)
s1+1+3 (m=3)
243 (m=2)
1+4 (m=2)
5 (m=1)
The following picture ilustrates the number of partitions of n for n=1, 2,3, 4,5, 6,7, 8




Part 11

p-Adic Series Containing the

Factorial Function

Is it true that the sum of the factorial series >  n! is a p-adic irrational?
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1 Introduction

The p-adic numbers (where p denotes a prime) were introduced by Kurt Hensel in
1897 and they are a fundamental part of number theory [26]. For instance, the
famous proof of Fermat’s Last Theorem used p-adic numbers. Apart from number
theory, p-adic numbers also appear in algebraic geometry, representation theory,
algebraic dynamics, cryptography, and many other fields of mathematics. They
have also found applications in physics (including p-adic quantum mechanics [9]),
and researchers believe that in the future many other disciplines will benefit from
the properties of p-adic numbers. This work focuses on p-adic analysis, which is a
quite recent technique in mathematics. The applications of p-adic analysis are wide
and have turned out to be a very powerful tool.

The p-adic number system for a given prime p extends the integer numbers [12].
Given a natural number n, if we choose a fixed prime p then we can express n in

the form .
n= Z a;p’, (1)
i=0

where each a; is a natural number between 0 and p— 1. Then we say that Zf:o a;p'
is the p-adic expansion of n. In traditional arithmetic, if n is an integer then this
can be understood as the expression of n in base p. The system of p-adic numbers is
constructed by allowing expressions such as (1) to be infinite sums, that is, formal
series on powers of p. Infinite p-adic expansions play a role similar to infinite decimal
expansions of real numbers. Furthermore, we can also talk about rationality of p-adic
expansions: as in the case of real numbers, a p-adic expansion represents a rational
number if and only if it is periodic, as explained in Section

It is important to distinguish between the set Z, of p-adic integers and the set Q,
of p-adic numbers because they are defined differently: Z, is a ring whereas Q, is a
field and contains the field Q of rational numbers. Both rings and fields are algebraic
structures which extend the concept of a group [27]. The following diagram relates
the sets of numbers Z, Z,, Q, Q, and R:
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The difference between a ring and a group is that a ring is defined as a set of
elements with two operations (addition and multiplication) instead of just one. In
the case of p-adic integers, we can add, subtract or multiply. Moreover, the difference
between a field and a ring is that a field contains inverses with respect to the second
operation of all non-zero elements. Therefore, in Q, we can add, subtract, multiply
or divide. In the ring Z, it is also possible to divide by non-zero integers, except for
powers of p.

A feature of p-adic integers is a concept of distance, which is formally similar
but very different from the distance between real numbers. In the real numbers, we
say that 2 and 3 are closer to each other than 2 and 10 because |3 — 2| < |10 — 2.
However, this is not how metric is defined in p-adic analysis. In Z, we say that
two numbers x and y are close if x — y is divisible by a high power of p. The
precise definition, which involves the concept of p-adic absolute value, is detailed in
Section . This metric extends to @, and has unique characteristics when it comes
to convergence of p-adic series.

In this work we focus on the series Y>> nl. This series converges in Z, for all p,
but the question whether its value is rational or irrational is an open problem. It is
believed to be irrational for all p, yet there is no known proof [28].

One of our main results is that, if we replace n! by a suitable p-adic approximation
(namely, the highest power of p dividing n!) then the resulting series converges to
an irrational number for all p. The idea of replacing n! by a p-adic approximation
which is computable in a non-recursive way is reminiscent to Stirling’s formula [23]:

n! ~ <ﬁ)n 2mn.
e
The difficulty about computing n! for large values of n is that it has to be done re-
cursively, and this makes it a very slow process. However, Stirling’s formula provides
a direct way to estimate n!.

In this work we also study the convergence of series of the form Y- n*(n+m)!
for arbitrary values of k and m. We conjecture that such a series only converges to
an integer for k = 2, m = 1, and for £k = 5, m = 1. These two cases are mentioned
without further comments in [28], were the following values are given:

Do+ =2 3% n°(n+1)! = 26.

We describe a method to compute the value of each series Y > ' n*(n + m)! in
terms of & = )" | nl, extending results from [J], and obtain that

an(n+m)! =za+y
n=0

where x and y are integers depending on k and m. We study the coefficient = and
observe that, for m = 1 and m = —1, the values of x are cyclic for consecutive
values of k if they are reduced modulo a power of 2, or a power of 3, or a power of
6, and only in these cases. We then use this pattern to infer some cases in which
the series Y _>° , n*(n 4+ m)! cannot converge to an integer since x # 0.

In Section 2 we collect some properties of p-adic integers and explain how to
compute p-adic expansions manually. We then explain a recursive way to do so,
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using Hensel’s Lemma, which is introduced with Newton’s Method due to their
similarities. In Section 3 we define the p-adic valuation and relate it to convergence
of series of p-adic numbers. In Section 4 we study the rationality of p-adic series,
provide a p-adic approximation of Y n! and prove its irrationality. In Section 5 we
discuss the irrationality of > n! and then in Section 6 we explain how to compute
the convergence of the series of the form > n*(n + m)! and prove a main result in
which Y n*(n + 1)! cannot converge to an integer. Finally, in Section 7 we analyze
these convergences modulo powers of primes.

2 Calculating with p-adic numbers

2.1 p-Adic expansions of roots of polynomials

In this section we explain how to compute p-adic expansions of roots of polynomials
by hand. The first step in computing a p-adic expansion, which is of the form
ag + a1p + ap® + -+~ with 0 < a; < p for all 4, is to find ag. In order to do so for
a root of a polynomial P(x), it is necessary to find a value of = for which P(x) is
congruent to 0 modulo p. The claim that a number a is congruent to b modulo n
means that a and b yield the same remainder when we divide them by n. This is
denoted by a = b (mod n).

Therefore, in order to start a p-adic expansion of a root of a polynomial P(x),
we need to assure that there exists at least one x such that P(z) =0 (mod p). We
first observe the following fact about linear equations:

Claim 2.1. For all a and b with a £ 0 (mod p) there exists a unique x such that
ar +b=0 (mod p).

Proof. Take the equation
ar +b=0 (mod p),
which can be rewritten as
ar —py = b.

This last expression is indeed a Diophantine equation since it is linear and there
are two variables [II]. By assumption, gcd(a,p) = 1. The necessary condition for
a linear Diophantine equation to have infinite solutions is that b be a multiple of
ged(a, p). Clearly, b is a multiple of 1, and hence this equation has infinite solutions.
Once we find a base solution zy and yo (both smaller than p), we can express the
general solution [11] as

kp ka

T=To+ —— Y=Y — —7 -
ged(a, p) ged(a, p)

If we add kp to the base solution zy, then z becomes larger than p except when
k = 0. Since x has to be smaller than p, it follows that the solution is xg and it is
unique. ]
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We now explain a method to compute p-adic expansions of roots of any polyno-
mial P(z), but we are going to give first an example using the quadratic equation
2?2 = 5. Note that in this case it is not true that we can find zy for every p. In
the example 22 = 5, we cannot find any root in Z, for p = 7, because by inspection
there is no xy such that x5 =5 (mod 7). However, zy does exist if p = 11, and the
two solutions are xyg = 4 and xo = 7. Note that 7 is the opposite of 4 modulo 11
with respect to the sum, since 7+ 4 = 11. Then we start working in Z;; and take
7 to be 4. We denote a solution of 22 = 5 by a. Thus « is of the following form
with p = 11:

a=ay+ap+ap’ +ap’ +--- .

We want o to be 5 and hence
5=a’= (ap+ ap+ agp® + azp® + - -+ )(ap + a1p + axp® + azp® + - - -).

If we multiply we obtain the following expression:

o’ = a% + (2apa1)p + (2apas + (ﬁ)p2 + (2a0a3)p3 + (2apa4 + 2a1a3 + a%)p4 4+ .-

All parentheses need to be congruent to 0 modulo 11. Also, for each occurrence of
11 in one parenthesis there is one carry (similarly as when we add in base 10). We
already know that ag equals 4 and therefore

ag =16 =5+ 11.
We carry one to the next parenthesis, which needs to be congruent to 0 modulo 11:
2a0a7 + 1 =0 (mod 11).
By substituting ag we find a;:
8a;+1=0 (mod 11); 8a; = —-1=10 (mod 11).

By inspection we see that a; equals 4. If we keep repeating this process we find the
first terms of the 11-adic expansion of «, which is

a=4+4+4-114+10-112°+4-112+0-11* +--- .

With this method the p-adic expansion of a root of any polynomial can be found,
provided that the first digit ay exists.

2.2 p-Adic inverses

We proceed to explain how a p-adic inverse with respect to multiplication can be
found. This is a number of the form 1/n evaluated in Z,, assuming that p does not
divide n. Take the example of 1/7 evaluated in Z;;. This can be rewritten as

7r=1 (mod 11).
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Here we substitute x with the 11-adic expansion
7(ap + 11l + a11” + a311° + - -+ ) = 1.

Therefore
Tag + Ta;11 + 7as11% + 7agl1® + - =1,

where 7Tag =1 (mod 11). We see by inspection that ay equals 8. Hence
Tag=7-8=56=1+5-11
If we put this back into the 11-adic expansion we obtain
(1+5-11) 4+ 7a;11 + Tagl1* + .- = 1.
As explained in the previous section, 5 is carried to the next parenthesis:
14+ (B+Ta)1l+---=1.

Now we need to solve
54 7a; =0 (mod 11).

This last expression is equivalent to
Ta; =—-5=6 (mod 11).
Since we know that the solution of 7a = 1 modulo 11 is a = 8, we can substitute
ap =8-6=48=4 (mod 11).
If we keep using this method we obtain that

r=8+44-1149-112+.--.

2.3 Newton’s Method

In the previous two sections we described how to find p-adic expansions of roots
of polynomials and inverses of nonzero integers. However, the process may take
a long time, especially if the degree of the polynomial is high. There is a much
more effective method to find p-adic expansions of roots of polynomials, namely
Hensel’s Lemma. The procedure is very similar to Newton’s Method. Therefore in
this section we first introduce Newton’s Method [24], which is used to find the roots

of a given polynomial f(x) over R or C. That is, we want to find  so that f(x) = 0.

We first need to determine an zy which is close to the actual root . The main idea
behind the method is that if we take the tangent line at xq and we determine when
it crosses the z-axis we obtain a value z; which should be much closer to the root

that we are trying to find [32]. The following picture illustrates the method:
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¥y y=7f(x)

/7 Tangent at x;
/ Tangent at x;
7
e :’/ - x
- X N Xy

Figure 1: Illustration of Newton’s Method using tangent lines.

In summary, Newton’s Method to find a root of a polynomial f(x) uses the
recursion
f(zn)

n

2.4 Hensel’s Lemma

Similarly to Newton’s Method, in p-adic analysis the way to find the roots of a
polynomial is using Hensel’s Lemma [6]. Let f(z) be any polynomial and suppose
that we want to find its roots in Z, for some prime p. Hensel’s Lemma states the
following [6]:

Lemma 2.2. (Hensel) If f(x) € Z,[z] and a € Z, satisfies f(a) =
f'(a) # 0 (mod p), then there is a unique o € Z, such that f(«)
(mod p).

0 (mod p) and
=0and a =a

The main idea behind Hensel’s Lemma is to find a solution modulo p and then lift
it modulo higher powers of p. Hensel’s Lemma assures that if there exists a solution
modulo p then there exists a p-adic expansion for the root of the polynomial and
it is unique. The method is the following. First we find z; such that f(z;) = 0
(mod p). Then we look for z5; we know that it is of the form

To = X1 + pt,

where we need to determine ¢{. We want that x9 = x; modulo p. By the Taylor
polynomial expansion [12] we know that

Fas) = flz1 +pt) & flar) +ptf (x) + - .

We do not need to write the whole expansion because

flay) +ptf'(z) +--- = flar) +ptf'(21) (mod p?).
Since we know that f(z1) =0 (mod p), we can divide the previous expression by p:
f(z1)

Y +tf'(z1) =0 (mod p).
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We can find ¢ from this expression and then we can find x5 since it is defined as
x1 + pt. These steps can be done recursively similarly as in Newton’s Method. In
general, we use these two expressions [12]:

f(xn71>

n—1

+tf'(rp_1) =0 (mod p); Ty =Ty +tp" " (mod p").

Note that, similarly to Newton’s Method, the necessary condition for Hensel’'s
Lemma to work is that f'(z) # 0 (mod p). Also, the coefficients of the polyno-
mials need to be reduced modulo p. We can take as an example the polynomial
22 =5 in Zy; studied in Section . We know that x; equals 4 and hence

Ty =11 +pt =4+ 11t (mod 11?).

We find t by using the previous recursive expression

11
11 +8 =0 (mod 11).

We see that ¢t equals 4. Thus we know that
To=4+ 11t =4+11-4=148.

Using this method we obtain the successive a;, which are 4,4,10,4,0,.... Note that
these a; that we obtained using Hensel’s Lemma for the polynomial 2% = 5 are the
same values that we obtained in Section by computing them manually for the
same polynomial.

3 p-Adic convergence

3.1 p-Adic norm

In this section we provide necessary definitions for understanding convergence [10]
of sequences and series in Z,,.

Definition 3.1. Given a prime number p and a positive integer n, the p-adic order
or p-adic valuation of n is the highest exponent o € N such that p® divides n.

The p-adic valuation of « is denoted by a = wv,(n). For instance, v5(24) = 3
since 23 = 8 | 24 and 2* = 16 1 24. The p-adic valuation satisfies the following
properties [10]:

1. vy(a-b) = vy(a) + v,(b).
2. 0p(a/8) = p(a) — y(b).

With the concept of p-adic valuation we can then define the p-adic absolute
value, also called p-adic norm [17].

Definition 3.2. |z|, = p~»®@ if  # 0. If z = 0, then |z|, = 0.

35



The p-adic absolute value satisfies the following properties:

L. |al|, > 0.

2. |abl, = lalp|blp-

3. | - aly = lal,

4. la+bl, < lal, + |b],-

5. Ja+ bly < max((aly, bl,).

This last property is a quite famous one because it means that the p-adic absolute
value is non-Archimedean [I7]. Therefore, using the previous example we can see
that |24], =272 = 1/23.

Norm of a factorial

Because this work examines the p-adic factorial function, it is natural to ask which
is the p-adic norm of n!. That is, given p, we want to find the largest o such that
p* | nl. This problem was solved by Legendre:

Theorem 3.3. (Legendre) If v,(n) denotes the largest power o of p such that p®

divides n, then
n
vp(nl) = Z{ J .

7
=1 P

n—=Sp(n
1

Moreover, Legendre showed that v,(n!) also equals —= ), where S, denotes the
p

sum of the digits of n in base p. Therefore,

il = 1/p" 55
We also claim the following:
Claim 3.4. [, [n!], = 1/nl.
Proof. The factorial n! can be written as
nl=92%.3% . ... %,

Hence the highest power of p that divides n! is ay; that is, |nl|, = p~*+. It follows

that ) .
H |n'|p = H]Q_Oq’c = o = —,
. . pr oonl

as claimed. O
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3.2 p-Adic series

As explained in the Introduction of this second part of the work, due to the prop-
erties of p-adic numbers the convergence of infinite series in Q, is different than the
converge of infinite series in R. This is due to the following definitions and remarks
from [15]:

Definition 3.5. A Cauchy sequence is a sequence such that its elements become
arbitrarily close to each other as the sequence progresses. That is, for every given
€ > 0 there exists an N such that for all m,n > N we have |a,, — a,| < €.

Definition 3.6. A metric space is complete if every Cauchy sequence converges.
Theorem 3.7. Q, is complete.

Then we can prove the following very important theorem in p-adic analysis [15]:
Theorem 3.8. A series Zzo:l x, converges in Q, if and only if lim,_,o x, = 0.

Proof. We define S,, = x1 + 29 + -+ + x,, 80 S, — S,_1 = x,. By definition [10],
Yoty = lim, oo S,. We first prove the first part of the implication. If )",
converges to | € Q,, then lim,_,, S, = {. Hence,

lim z, = lim S, — lim S, =1—-1=0,

n—00 n—00 n—00

and the first part of the implication is proven. Now we prove that the converse is
also true. If lim,,_,,, x, = 0, then for all pairs of positive integers m > n we have

Sm_sn - Sm_ m—1+Sm—1 _Sm—2+"'+sn+1 _Sn :xm+xm—1+"'+xn+1-
Consequently,
|Sim — Sulp < max(|Tmlp, - - - |[Tnt1lp)-

Given € > 0, there exists a sufficiently large N such that |z,,[, < €, ..., |Tut1|p <€
if m,n > N, because |z,|, goes to 0. Therefore, according to Definition 3.5, S, is a
Cauchy sequence and hence converges because Q, is a complete metric space. [

Theorem 3.9 is clearly not true in R. The fact that the general term goes to 0
does not imply that the sequence converges. For instance, the general term of the
well-known harmonic series 1+ 5 + 3 + 1 + -+ tends to 0, but the series does
not converge. Therefore, in p-adic analysis it is easier to decide whether a series
converges or not.

4 The series > n!

4.1 Convergence in Z,

After having discussed convergence in general of series in p-adic analysis, we now
turn to the factorial series Y n!l. We first observe the following:
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Claim 4.1. The series Y n! converges in Z, for all primes p.

Proof. Since |n!|, = 1/p%, we have that |n!|, — 0 when n — occ. O

To compute the sum of ) n! in Z, we can calculate the partial sums of the series
> nlin Z and then represent the result in base p. Since n! is an integer, computing
its p-adic expansion means representing n! in base p. For instance, imagine we want
to represent 1! + 2! + 3! + 4! in Z3. In R this sum equals 33. This is 1020 in Zs,
because 33 =1-3%+0-3242-3 + 0, which is the 3-adic expansion of 33. The first
digits that become permanent are the ones corresponding to the lower powers of p.
Therefore, we are interested in the last digits of the base p representation of ) nl.
Figure 2 illustrates the convergence of > n! in Zs. Table 1 provides some digits of
the sum of > n!in Z, with p = 3,5,7,11. Also Z is included in the table because
although it is technically not correct to talk about Zy since 10 is not a prime, we
usually operate in base 10 and hence the process is easier to visualize.

It is important to remark that the question whether ) n! is rational or irrational
remains unanswered since this question was posed in [28]. In the following section
we explore the p-adic meaning of rationality.

Figure 2: Example in our C++ code of how the sum of n! converges in Zs.

¢] Converges to
3 ...2011012101
5 ..1034004224
7 ...3020161166
10 ...0420940314
11 ...611041099%411

Table 1: Example of the convergence of > n! in Z, depending on p.
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4.2 Rationality of p-adic expansions

In R we widely use the concepts of rationality and irrationality. It is clear that
all integers are rational, and we say that a real number z is rational if it can be
expressed in the form a/b where a and b # 0 are integers. When we write the
decimal expansion of a given number x, we observe that if x is rational then its
decimal expansion is periodic and viceversa. Therefore, periodicity is is a necessary
and sufficient condition for rationality. We claim that the same property holds with
p-adic numbers:

Theorem 4.2. The p-adic expansion of any x € 7Z, is periodic if and only if x is
rational.

Proof. First we prove one part of the implication: if the p-adic expansion of z is
periodic, then z is a rational number. Suppose that we have a p-adic expansion
a1p + asp® + azp® + ---. First we consider the expansion to be purely periodic
without ag, and we denote the length of the period by j. Therefore, we can rewrite
the expansion as

plar +asp+asp® + -+ a;p ") + 0 a0+ apap + ajpap’ o Fagp’ )

Because the expansion is purely periodic and of length j it means that a; =
Qjp1 = Q2541 = = Qfj41, @2 = Aj42 = A2j42 = = Akj42, etc. Therefore, all
the parentheses of length j are equal. We say that a1+ arjiop + - - - + agr1);p°
equals 7 for all values of k. Then we can rewrite the previous expression as

VAP AT T = (p o p T g T ),

The parenthesis (p+p/*! + p¥ ! ...+ p*+1 ... ) is a geometric series, which
means that (applying the formula for the infinite sum of a geometric series) it is
equal to p/(1 — p’). This is clearly rational, and therefore this part of the proof is
complete. If the expansion is not purely periodic, then the proof still holds because
we just subtract the non-periodic part from both sides of the equation: if we subtract
a rational number from p/(1 — p’) the result is still rational.

Now we prove that rationality implies periodicity. If a p-adic number is rational,
then it can be written as a/b for some integer a and b. Recall the method for
finding the p-adic inverse of any number of the form 1/b for any non-zero value of b
explained in Section 2.2] Each time we compute a new a; for the p-adic expansion
of the inverse ag + aip + asp? + --- we multiply some number smaller than p by
a fixed integer d such that bd = 1 modulo p. Because this method finds the value
of a; regardless of ¢ and only depends on the value of a;_;, when the value of a;
for some j equals the value of any previous a; the digits start to repeat and thus
the expansion is periodic. This explains the periodicity of the p-adic expansion
of 1/b. In order to generalize this proof, we need to consider any fraction a/b. First
1/b = m+~(p" + prtt 4 pr+%tl o4 prfkitl ) because it is a periodic
expansion, where m € Z denotes the possible non-periodic part of 1/b and r is the
exponent of p from which the expansion becomes purely periodic. When we multiply
by a we obtain that a/b = am + ay(p" + pr L 4 pr2FL 4 oprrkitl L)
which is also periodic. ]
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4.3 A p-adic approximation of n!

The motivation for finding a p-adic approximation of n! comes from Stirling’s for-
mula. As explained in the Introduction, it is not fast to compute large factorials
because it has to be done recursively. However, Stirling’s formula uses the function
n™ in order the compute the factorial directly. Stirling’s formula tells us that

n! ~ <ﬁ) 2mn.
e

Note that if we rearrange the expression as

n
n_! = (1) 2mn
nn e
we observe that the quotient between /n! and n tends to a constant as n grows
large. Therefore, we can say that although both ¥/n! and n tend to infinity, they
do so at the same speed.

Now we want to find a p-adic approximation of n!. Instead of going to infinity,
as explained in Section n! goes p-adically to 0 when n grows large. Therefore,
we want to find a function that goes p-adically to 0 with the same speed as n!. We
have the following answer:

n—=Sp(n)
Claim 4.3. The function p 1 converges to 0 at the same speed as n! in Z,.

Proof. The function in Claim 4.3 comes from Legendre’s Theorem (see Section [3.1)).

Since %"1(") returns the highest power of p that divides n!, when we represent n! in
n—Sp(n)

Z, it ends with %pl(") zeroes. Also, p »1  in Z, consists of 1 followed by n=5(n)

p—1

zeroes. Therefore, the two functions have the same number of ending zeroes for any

value of n and thus their rates of convergence are the same. O
. . n—Sp(n)
4.4 Irrationality of > p »-!
n—Sp(n)

In this section we consider the series Y p~ »=1  and we prove that it converges to an

irrational number in Z,. We discuss this series because, as explained in the previous
n—=Sp(n)

section, p T s p-adically close to n!. We claim the following;:

n—>Sp(n)

Theorem 4.4. The sum of the series Y ,p~ »=1 is irrational in Z, for all p.

Before we go to the proof, it is useful to study the evolution of S,(n) as n
increases. Figure 3 illustrates the evolution of S,(n) for p = 3.
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Sum of digits in base p

oooooooooo

ooooooooooooooooo

Spin)

ooooo

ooooo

Figure 3: Evolution of the sum of the digits of n in base 3 until n = 71.

With this data we can construct the following table.

n ninbase p S.(n) pir-sein))/ip-2)
0 0 0 30
1 1 1 30
2 2 2 30
3 10 1 3!
4 11 2 3!
5 12 3 3!
6 20 2 32
7 21 3 32
8 22 4 32
9 100 1 34
10 101 2 3
11 102 3 34
12 110 2 3°
13 111 3 3°
14 112 4 3°
15 120 3 30
16 121 4 3¢
17 122 5 3¢
18 200 2 38
19 201 3 38
20 202 4 38
n—Sp(n)

Table 2: Evolution of p~ »—1

For the following claims we need to define a new term:

Definition 4.5. The k" package of n in base p is the set formed by the numbers
Sp(n) with n from kp to (k+ 1)p — 1.

Therefore, the cardinality of every package is p. First we note the following:
Claim 4.6. The elements in any package are consecutive.

Proof. Let S,(n) be the first element of any package. By definition n is a multiple
of p, which means that the representation of n in base p ends with at least one
zero. Let S,(m) denote any other element in the same package. The last digit
of the base p representation of m cannot be zero, because by definition the next
multiple of p lies in the next package. Therefore, the only difference between the
base p representation of n 4 i and the base p representation of n + (i + 1), where
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0 <17 < p—1, is that the last digit increases by one, starting with 0 for n and
finishing with p — 1 for n+ (i + 1). Because S,(n + i) denotes the sum of the digits
of the base p representation of n + i, it is clear that the elements in any package are
consecutive. O

(n)

Corollary 4.7. The number * 1s constant for all elements in the same package.

Proof. From Claim 4.6 it is clear that in any package S,(n) increases by one when
n increases by one. Therefore, n — S,(n) is constant for all elements in the same
package. The number p — 1 is also constant, which means that %pl() remains the

same for all elements in the same package. O]

n—=Sp(n)
Corollary 4.8. The number p~» = finishes with the same number of zeroes for all

the elements in the same package.

n—=Sp(n) . . .
Claim 4.9. The number of zeroes of p~ »=1 in base p s increasing.

n—5p(n)

Proof. As explained in Section 4.3, p~ »=1  finishes with the same number of zeroes
as n! in base p. Because n! =1 - 2 -+ (n — 1) - n, the number of multiples of p in
n! can only be increasing. m

All these claims can be observed in Table 2. For the proof of Theorem 4.4 it

is important to take into account the disposition shown in Figure 4. This diagram
n—>Sp(n)

represents the addition by hand of p~ 7= 1 for p = 3 and until n = 20. In Figure 4
n—=Sp(n)
it can be observed how the number p~ »=7 finishes with the same number of zeroes

for all the elements in the same package, as stated in Corollary 4.8.

17
1r-k=0

1

n=3 «<— 10
10 k=1

10 |

100 |

100 - k=2

100 |

n=9 «— 10000 |
10000 + k=3

10000 |
100000 |
100000 ~ k=4
100000 J
1000000 ]
1000000 + k=5
1000000 |
100000000 |
100000000 [~ k=6
100000000 |

—Sp(n)
Figure 4: Values of p~»=1 for p = 3 until n = 20. Powers of 3 are marked in red.
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Having made all these observations we can now prove Theorem 4.4.

Proof of Theorem 4.4. We focus on what happens when n is a power of p. That

is, n = p® for some value of « € N. We now compare the number of zeroes of
(n=1)—Sp(n—1) n—=Sp(n)

P p=1 with the number of zeroes of p~»-7 . Because n = p®, the base p
representation of n consists of 1 and « zeroes. Therefore, it is easy to compute the
n—Sp(n)

number of zeroes of p~ »=1 because S,(n) = 1. Also, because n — 1 = p* — 1, the

base p representation of n — 1 consists only of p — 1 digits, and there are « of them.
n—=Sp(n)
Therefore, S,(n — 1) = a(p — 1). Hence, the number of zeroes of p T s ZT_%,
(n—1)—Sp(n—1)
whereas the number of zeroes of p 1 is
n—=Sp(n) (n=1)—Sp(n—-1)
that p~»=T has a more zeroes than p p=T )
n—Sp(n) n—1 i—Sp(i) L. (n—l)—Sp(n—l)
Then when weaddp™ »=T to ) p »—' , between the first digit of p p—1
n—Sp(n) n—=Sp(n)
and the first digit of p »-1 there are o — 1 zeroes. When we add P T to
i—Sp (i)

Z;:Ol p 1, we see that after the first digit of the result (which is a 1 that comes

n—l-a(p-1) _

n=l _ . So this means
p—1 p—1

n—Sp(n)

from p p-1 ) and the following 1 there are o — 2 zeroes. It is & — 2 and not o — 1
because when adding the packages for each package there are p ones that we have to

add together, which means that there is exactly one carry for each package. Then,
n—=Sp(n) - i—Sp (i)
the important observation is that when we add p 1 to Z?:Ol P P , we fix all
n—Sp(n)
the digits that come before because by Claim 4.8 the number of zeroes of p 1 s

increasing (also see Figure 4). Therefore there are Z%i digits that are forever fixed

. . n—S5p(n) L. .

in the expansion of » p~ 71 | which implies that there are o — 2 zeroes that are
: . n=>Sp(n) )

forever fixed in the expansion of Y p~ »1 . However, « increases by one for each

. . n—=Sp(n) .
power of p, which means that the number of zeroes fixed in > p~ #»-1  increases

by one each time we encounter a power of p. Therefore, this expansion cannot be
n—Sp(n)
periodic, and by Theorem 4.2 the p-adic expansion of ) p 1 s irrational, as we

wanted to see. O

In order to make this proof more visual, the following diagram represents the

addition for 32 — 1 = 26 and 3% = 27 in Zs. It can be observed that there is one zero
n—=S3(n)
forever fixed in the sum of >3 1 , and when we add the term corresponding to

3* = 81 there will be two zeroes forever fixed, and so on.
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10000000000

-+ 10000000000000

Zero forever

) ) carry
fixed in the sum

Figure 5: Visualization of an example: addition for n = 26 and n = 27 in Zs.

We have written a short article containing the proof of Theorem 4.4 and have
posted it in the arXiv [3].

5 Regarding the irrationality of ) _ n!

The main motivation of this work has been the series > n!, because it is not known
if its sum is rational or not. After proving the irrationality of the p-adic analogous
that we found, we tried to prove the p-adic irrationality of Y n! using the same ideas.
However, we did not manage to prove it. Nevertheless, we found two arguments that
could be useful towards a proof. The first one is the following:

Claim 5.1. For any positive value of n,

Proof. We proceed to prove Claim 5.1 by induction. We assume that k! > Zf:_ol 7!

is true and we want to see if it is also true for k£ + 1. Our base case holds, since

k—1 k—1 k—1
(k+D!=(k+DEI>(k+1)> ) il=k) i+ ) 4
=0 =0 1=0
k—1 k—1
= RO+ 1+ (R =)+ > il > k(k - 1)1+ il
i=0 1=0
k—1 k
=k+) il=) il
=0 =0
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Since the base case holds and we saw that if Claim 5.1 is true for £ it is also true
for k + 1, the proof is complete. n

We also make a second observation:

Claim 5.2. The number of ending zeros of n! cannot be larger than the number of
digits of Zz;é k!
Proof. We first observe the following: due to the rapid growth of n!, when we add n!

to Z;é k!, the number of digits of >";_, k! is approximately the same as n!. This
is supported by Claim 5.1. Therefore,

log (3 _r_o k!) = log(n!).

We take the logarithm because it is well-known that the number of digits of z
is roughly log(z). Now we can get an approximation of log(n!) applying Stirling’s
Formula. Recall from the explanation of Section 4.3 that, due to Stirling’s Formula,
n! ~ n", although it is clear that n™ > nl. Hence, log(n!) ~ nlog(n) and we have
that

log (3"r_o k!) =~ nlog(n).

Now we evaluate the number of zeroes of (n + 1)! compared to the number of
zeroes of > ' _, k!. Tt suffices to analyze the case in which (n+1)! has the maximum
number of zeroes, and because we are working in Z, this happens when (n + 1)! is
a power of p. Then we can apply Legendre’s Formula to obtain that S,(n+ 1) = 1.
Therefore, the number of ending zeroes of (n + 1)! is (”;ﬁ

that nlog(n) >

)
and hence the proof is complete. O]

= 2 It is then clear
p—1

6 Convergence of other p-adic series with n!

6.1 First type of series

After having analyzed the series > n!, we saw in [2§] the following claim, which is
stated but not proven there:

Claim 6.1. > ° nn! = —1.

Proof. We do not know if ) n! is rational or not, but we can compute the following:

o0

D+ =nl]=11—=0+2 =11 4+31 =20 = —1.
n=0

Because of the alternating sign, all the terms cancel except for —0!, which is equal
to —1. Moreover,
m+1D)!—=nl=nln+1-1)=nn!

and therefore

o0
Z nn! = —1
n=0

as claimed. n

45



For the subsequent proofs we use the following notation:
Definition 6.2. We denote >~ n! by «.

The following output of our C++ code illustrates the meaning of p-adic con-
vergence to —1 in Zs. Note that the digit p — 1 (in this case 4 because —1 = 4
modulo 5), keeps appearing in the end more and more as n increases.

until what n: 3@
5

1613110004141

1613110004141

Figure 6: Convergence of the series Y nn! to —1 in Zs.

We then asked ourselves, given that this is a recursive method, if there is also a
method to compute > >°  n*n! for higher values of k. The answer is yes, and here
we provide the method. We can compute Y2 n?n! using the following trick:

i(n—k?)(n—kl)n!:i(n—FZ)!:in!:a—l. (2)
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However, we also have that

i(n+ 2)(n+ 1)n! = ioj(n2 +3n+2)n! = inQn! + 3§:nn! + Qin! (3)
n=0 n=0 n=0 n=0 n=0

Then substituting with (2):

o0 o.¢] o0 o0
Zn2n!+32nn!+22n!:ann!—B—i—Q(a—i—l). (4)
n=0 n=0 n=0

n=0

Equating (2) and (3) we obtain

a—lzZnQn!—l—i—Qa
n=0

and therefore

oo
g n’n! = —a.
n=0

The same method works when k£ = 3:

i(n+3)(n+2)(n+1)n! :i(n—i-?))! :in! =a—U'+2)=a—-3; (5
i(n +3)(n+2)(n+1)n! = i(n?’ + 6n* + 11n + 6)n! (6)

The last equation is equal to:

D nPnl4+6) nPnl+11) nnl+6) nl=> n’nl+6(—a)+11-(~1)+6a (7)
n=0 n=0 n=0 n=0 n=0

Therefore, from (5) and (7):

in?’n! =a+2.
n=0

This is a recursive process and by obtaining all the values of » >~ n'n! for
i <k — 1 we can obtain the value of > n*n!. Hence we infer the following:

Claim 6.3. If a =Y 7 n! is rational, then Y - n*n! is also rational for all k.
Proof. As seen from the recursion, Y - n*n! = sya+ yx, where the integers s; and

yr depend on k. If « is rational then so is spa + yi. O
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Note 6.4. From now on, we shall denote the value of the coefficient of & when we
compute the sum of >_>° nFn! by s;.

Following the recursivity, we can display as many values of - n*n! as desired:

i nn! = —1 (8)

ZnQn! = —« 9)
n=0

Zn?’n! =a+2 (10)
n=0
Zn4n! =2a—3 (11)
n=0

Zn5n! = —9a — 4. (12)
n=0

What is very interesting to observe about these series is the following: if the
coefficient of a is 0, then Y °° n*n! converges to an integer. We have computed
using C++ the values of s; (the coefficients of ) until very large numbers, and we
have encountered that it only seems to be 0 when k£ = 1. Table 3 shows the values
of the coefficient of o until £ = 15. We observe that the value of the coefficient of «
bounces between positive and negative values, but the absolute value seems to keep
increasing. This provides evidence to conjecture the following:

Conjecture 6.5. The series y -, n*n! converges to an integer only when k = 1.

Coeficient of a

k

1 0

2

3 1

4 2

5 -9

6 9

7 50

8 -267

9 413
10 2180
11 -17731
12 50533
13 110176
14 -1966797
15 9938669

Table 3: Coefficients s; of o until £ = 15.
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When we checked if this sequence of integers existed in the On-line Encyclopedia
of Integer Sequences (OEIS) we found out that it exists indeed, and the values of s
are called complementary Bell numbers or Uppuluri-Carpenter numbers. They are
related to combinatorics and to the function e!~¢. In several recent papers [1], 8 21]
and these numbers are also linked to other features in p-adic analysis.

In the next section we relate the numbers s, with other p-adic series and provide
C++ code to compute values of sy,

6.2 A variation of the previous series

Once we have discussed the series Y - n*n! we wondered what happened if we
analyzed the series

Z n*(n+ 1)L

n=0

We found a recursive method to compute the sums of these series based on o and
on the values obtained in the previous section (the values of s;). For this method
to work we first need to compute > 7, n*n! before computing Y oo n*(n+1)!. We
start by showing an example:

d nPn+1)=) (n-1)n (13)
n=0 n=1
and we also have that
Z(n —1)*n! = Z(n2 —2n+ 1)n! = ZnQn! -2 Znn! + Zn!. (14)
n=1 n=1 n=1 n=1 n=1

Substituting with the values obtained in the previous section we find that

inQn!—Qinn!qu:n!:—a+2+a:2. (15)
n=1 n=1 n=1

The following output of our C++ code illustrates the meaning of the convergence
of % ;n*(n+ 1)! to 2 in Zs. Note that the digit 2 is always at the end of the
expression. Before the 2 there is an increasing number of zeroes, which means that
the series converges to 2.
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84438182

20100121331240802

42106404 44108002

12143010 1444410002

43000002

3000002

3119424040911000000082

Figure 7: Convergence of the series Y n?(n + 1)! to 2 in Zs.

Using this trick and this method of recursion we can compute the following values
00 k | ; — K.
of > yn*(n+ 1)! until k = 5:

ing(n—l—l)!:?)oz—l (16)

n=1

in4(n+1)! =—Ta—7 (17)

irf’(nﬂ)! = 26. (18)

We observe that, in this case, > - n*(n + 1)! converges to an integer (which
means that the coefficient of « is 0) for £ = 2 and k = 5, regardless of the prime p
with respect to which the convergence is taken. The question is: Will >>° | n*(n+1)!
converge to an integer for any other value of k7 Again we have computed the
coefficients of v until very large k and we conjecture that the answer is no. Table 4
provides the first 15 values of the coefficients of «.
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Coeficient of a

0

3

-7

0

59
-217

146
2593
-15551
32802
160709
-1856621
7971872
1299951

00N U~ WX

A i N
“i AW N PRFE O

Table 4: Coefficients of «v in the sum of Y > n*(n + 1)! until k& = 15.

Similarly as in Table 3, the coefficients of o bounce between positive and negative
values, yet the absolute value seems to be increasing. Therefore we conjecture the
following:

Conjecture 6.6. The series y n*(n+1)! only converges to an integer for k = 2
and k = 5.

We have not found this conjecture in any of the papers related to this topic.

6.3 Generalizing further

In Section we studied the series Y - n*n!, and in Section 6.2 we considered
the series Y -~ nF(n+1)!l. Now we analyze a broader generalization of those series,

namely
Z n*(n +m)!
n=1

We ask again: when does this series converge to an integer in Z,? We have computed
using our C++ program all the combinations of very large numbers of £ and m and
have encountered that Y2, n*(n 4+ m)! only converges to an integer when k = 1
and m = 0; k =2and m = 1; £k = 5 and m = 1. Therefore we conjecture the
following, which is the main conjecture of this work:

Conjecture 6.7. The series Y .-, nF(n + m)! only converges to an integer when
k=1landm=0,k=2andm=1; k=5 and m=1.

As with Conjecture 6.6, we have not found Conjecture 6.7 in any article. If
we analyze how to compute the sum of Y > n¥(n + m)! when k is fixed, we can
prove some results. We provide the following recursive method that also uses the
coefficients of o described in Section (the values of si). We start with k£ = 1:

in(n—l—m)!:inn!—min! (19)
n=1 n=1 n=1
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If we only take into account the coefficient of o we have that

inn! — mi n! = —ma. (20)
n=1 n=1

It is clear that —m is zero only if m = 0. We already knew that Y >, nn!
converges to an integer (see Claim 6.1). Now we repeat the process for k = 2:

ZnQ(n +m)l+t= Z(n —m)*n! +t = Z(n2 —2nm +m*)n! +t
n=1 n=1 n=1

—inQn!—Qminn!ijzin!—i-t. (21)
n=1 n=1 n=1

Then, substituting for the values of s and ignoring the independent value t
found in Section because is not related to the coefficient of «, we obtain the
following:

ZnQn! —QmZnn! +m2Zn! = —a+mifa = (—1+m?a. (22)
n=1 n=1 n=1

It is clear that (—1 + m?) is 0 only when m = 1. As it is observed, this process
is recursive and can be employed for any k and m. However, we have to clarify two
steps:

1. When we go from Y >7 n*(n+m)! to >_>7 (n — m)*n! in the first step, the
subindex of the second series should not be n = 1 but rather n = k. However,
this does not affect the final coefficient of a, because to bring back the n =1
in the subindex we would have to add some independent terms, which have
nothing to do with the coefficients of a.

2. When we put the values of s; in the sum we ignore the independent terms
explained in Section [6.1] or ¢ as written in (19). This is because we are only
interested in seeing when the coefficient of « is 0, and thus we only take into
account the coefficient of o and ignore the independent values.

As it is observed in the previous two examples, for each series we obtain that
the coefficient of « is a polynomial that depends on m. Because when we evaluate a
polynomial with any of its roots the result is zero, the coefficient of « equals zero if
and only if the polynomial that depends on m has some positive integer root. Here
we provide the polynomials that depend on m (which are the coefficients of «) for
k=3,4,5,6:

in3(n+m)! = (14 3m —m?)a (23)

n=1

52



in‘%n +m)! = (2 —4m — 6m* + m*)a (24)

n=1
> nP(n+m)! = (=9 — 10m + 10m” + 10m* — m®)a (25)
n=1
Z nS(n+m)! = (9 + 54m + 30m?* — 20m® — 15m* + m®)a. (26)
n=1

If we analyze these polynomials, the only one which has one positive integer root
is when k£ = 5 with m = 2. This series is part of our conjecture (see Conjecture 6.3).
However, we can claim the following:

Proposition 6.8. The series Y o, n*(n +m)! does not converge to an integer for
k=3,4,6.

Proof. For the proof it suffices to see that the polynomials given by (22), (23) and
(24) have no positive integer roots. O

When we checked in the literature if these series had been computed, we found
them in [31], where the same coefficients had been obtained. This seems to be the
only paper in which these polynomials are mentioned.

Nevertheless, it is not feasible to keep computing these polynomials to prove
Conjecture 6.7. Instead we need to find a general formula. Let Py(m) denote the
polynomial that has been analyzed in this section that depends on m and corre-
sponds to the coefficient of « in the sum of the series >_ nf(n + m)!. We analyze
what happens when we evaluate P, (0) for each k. Clearly, we get rid of all the terms
except for the s, term in the beginning. Observe, in the previous examples, that
the only cas which there is no m in the coefficient is the one that corresponds to
S"nFnl. As defined in Section [6.1} " n*n! = s,. Therefore we claim the following:

Claim 6.9. P.(0) = sy.

Now we make another observation: what if we evaluate Py(—1)7 We obtained
the following results in our C++ code:
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Introduce until what n: 208

Figure 8: Result of P;(—1) for the first values of k.

Amazingly, these numbers are exactly the same as the ones found in Section [6.1}
Claim 6.10. Pk+1<—1) = Pk(()) = Sk

We found that this property had been proven in [31].

7 Properties and cycles of Pi(—1) and Py(1)

Because with Claim 6.10 we know the result of P,(—1), we can now relate it to
Py(1). Recall our conjecture stated in Section

The series Y oo, n*(n + 1)! only converges to an integer value for k =2 and k = 5.
We again focus on (n + 1)! because these are the resulting series using Py (m)
when m = 1. Observe the values of Py(1) and P,(—1) for k = 2, 3,4 (recall that the
definition of s is given in Section :
ag(l) = S9 — 281 + 1
ag(—l) = S9 + 281 +1
ag(l) = S3 — 382 + 381 -1
az(—1) = s3+3s9 +3s1 + 1

a4(1) = 84 — 483 + 682 - 481 +1

CL4(—1) =S4 + 483 + 682 + 481 +1
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From these observations (note that the coefficients of s; are the binomial coef-
ficients), and from the fact that we are developing the polynomials (m — 1)* and
(m+1)* for P,(1) and Py(—1) respectively, we can derive the following two formulae:

P =30 (s, (27)

n=0

P =3 (fj) n (28)

n=0
where uy = 0. It is interesting to compute the difference between Py (1) and Py(—1).
We define the following:
Definition 7.1. We denote r, = P,(—1) — Pc(1).

Defining these numbers 7}, is an idea that we have not found in any of the papers
related to this topic, and it has turned out to be very useful for the subsequent
proofs in this section. Therefore, using r; is one of the main contributions in this
part of our work.

The following equations show the results of Py(—1) — P(1) for k = 2,3, 4:

2
7’2:2' (1>81

3
7’3:2' (1)82—|—2
4 4
7’4:2' (1)53+2 (3)81.

From these observations we can also find a formula for r:

k

2k +1

Toky1 = 2 E (22. _ 1>32k—2i+2 +2 (29)
i—1

Yook
Top = 2 Z o; _ 1) S22+ (30)
i1

Therefore we claim the following:
Proposition 7.2. The number ry is even for all values of k.

Proof. Due to the fact that P.(1) has alternate signs whereas P.(—1) only has
positive signs, when we subtract Py(1) from Py(—1) we eliminate the terms s; whose
coefficient is (2’2) (and thus have negative sign in Py(—1)), for any positive value
of v < k. However, the other terms (the ones that are positive in both P,(1) and
Pi(—1)) are added together and the result is therefore even. Because 7y is then

formed with only even coefficients, r, is even. O
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Corollary 7.3. Py(1) and Py(—1) have the same parity modulo 2.

Proof. The difference between Py (1) and Py(—1) is ry. If Pi(1) and Py(—1) had a
different parity modulo 2, then the difference between them would be an odd number.
But this is a contradiction because, by Proposition 7.3, r; is always even. O

Recall that we are interested in studying when is Py (1) = 0. Observe the follow-
ing:

Observation 7.4. P.(1) = 0 if and only if Py(—1) = ry.
Proof. This is clear by the definition of r. m

We make the following remark: If P,(—1) and 74, are equal when P;(1) = 0, then
they are also equal modulo any prime. Therefore we claim the following, which is
one of the main results of this work because we have not found it in any paper and
it partially solves Conjecture 6.2:

Theorem 7.5. If P(—1) =1 (mod 2), then > >~ n*(n+1)! does not converge to
an integer.

Proof. As stated in Proposition 7.3, 7k = 0 (mod 2) for any value of k. Therefore,
if P.(—1) = 1 (mod 2) then the equality Py(—1) = 7, cannot occur. Thus, by
Observation 7.5, P,(1) cannot be equal to 0. This means that because P,(1) = x in
the sum of >_>7 ' n*(n+1)! = za+y, the number z is not 0 and hence Y- n¥(n-+1)!
does not converge to an integer. O

7.1 Cycles of P,(1) and Pi(—1) modulo p

Because of Theorem 7.6 we want to analyze when is P;(—1) = 1 (mod 2). The
results and ideas found in this section are also new to this topic, because only in [21]
the values of P(—1) are evaluated modulo 2. In our work we find interesting results
when evaluating not only Py(—1), but also Py (1) and r;, modulo n for different values
of n. Our motivation for computing P;(—1) modulo 2 comes from Theorem 7.6. If
we represent Py(—1) modulo 2 for some values of k& we obtain the following plot:

Pk(-1) mod 2

12

congruent to
™

1 3 5 7 9111315171921 2325272931333537 394145454748

k

Figure 9: Result of P,(—1) modulo 2 for the first values of k.
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In fact, as can be seen in Figure 9, if we compute the remainders of P;(—1) when
we divide the polynomial by 2 we observe a period of length 3 which consists of the
remainders 1,1,0. This is proven in [21]. All these results lead to our main result
in this part of our work:

Theorem 7.6. The series Y .- n*(n + 1)! does not converge to an integer when
k=0 (mod 3) or k=1 (mod 3).

Proof. By Theorem 7.6, if P,(—1) = 1 (mod 2) then > 2 n*(n + 1)! does not
converge to an integer. Using that s, = P;(0) and that P,(0) =1 (mod 2) when k =
0 (mod 3) or k =1 (mod 3), since Pyy1(—1) = Px(0) Theorem [7.6]is proven. [

It is then natural to ask the following question: what if we evaluate Py(1),
Py(—1) and r; modulo other numbers? We did not observe any other patterns in
any of the three sequences. However, we did observe cycles in the three sequences
if we applied one little change: whenever we were evaluating Py(1), P.(—1) or r
modulo n, if the resulting number was negative then we took the opposite of this
number modulo n. So for example, imagine that Py (1) = —6 for some value of k.
Say that in our C++ program we are computing the results of P;(1) modulo 8.
Then, because we are working modulo 8, we take the value of —6 to be 2, because
—6 = 2 (mod 8). Therefore, our C++ program would return that P(1) = —6 is
congruent to 2 modulo 8. By analyzing the three sequences with our little variation
we obtained very interesting cycles:

Observation 7.7. The representation of Py(—1), Py(1) and ri modulo n for con-
secutive values of k is cyclic if and only if n is a power of 2, 3 or 6.

The following figures illustrate the representation of P,(—1) modulo 3, 4 and 6 for
some consecutive values of k. The periodicity of the remainders is clearly observable.
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Pk(-1) mod 3 Pk(-1) mod 4

25 35
3
2
25
£15 &
£ 2 2
z o
2 3
= @
15
g 1 g 15
1
05
05
o 0
147 101216192225 2831 34 3740434540 5255 58 6164 677073 7670 82 8588 012407 1 4 7101316192225283134 374043 4649525558 616467 7073 76 79 82858891 9497
k k
Pk(-1)mod 6
6
5
4
2
€
%3
-
15
H
8
2
1
0

1 4 7101316192225 283134 37 4043 464952 5558 61 6467 70 73 76 79 82 8588 91 94 97
k

Figure 10: Result of Py(—1) modulo 3, 4 and 6 (in this order) for k£ until 100.

The same results occur with P,(1) and 4. The following figures illustrate the
representation of Py (1) and r, modulo 3, 4 and 6 for some consecutive values of k.

Pk(1)mod 3 Pk(1) mod 4
25 35
3
2
25
k) 2
zm t o2
H
Fl 215
1
05
05
0 0
1 4 7 101316 19222528 3134 374043 4649 5255 5861 6467 707376 7982 85889194 97 14 71013161922252831343740434649525558 6164 67707376 798285 88919497
k k
Pk(1) mod 6

1 4 71013 1619 22 2528 31 3437 40 4346 49 5255 58 6164 67 7073 76 7982 85 8891 94 97

Figure 11: Result of P;(1) modulo 3, 4 and 6 (in this order) for £ until 100.
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r_kmod3 r_k mod 4

j W TTEERRTALY

14 710131615822252831343740434649525558 61646770737679 B2B5 88919457 14 71013161922252831 343740434649 525558616467 70 73767982858891 9497
k 3

congruent to
H
n

-

=
n

congruent to

r_kmod6

I

14 710131619222528313437404346495255586164 6770737679 828588019497
3

—
——

Figure 12: Result of r, modulo 3, 4 and 6 (in this order) for & until 100.

Although the patterns are different in these other examples, the cycles are also
very clear. On the other hand, if we try to find a cycle in any other prime, power of
prime, or any composite number in general, we do not spot any patterns. Figure 13
shows an example of P,(—1) evaluated modulo 5.

Pk(-1) mod 5

congruent to
K e
ra [%,]

[
in

[

k=]
in

(=]

14 7101316192225283134374043 464952555B861646770737670 828588019497
k

Figure 13: Result of P;(—1) modulo 5 for k& until 100. No cycles are spotted.

We next study the relationship between the length of the different cycles. For
instance, the length of the cycle of Py(—1) modulo 3 is 13, whereas the length of the
cycle is 39 modulo 3 and 117 modulo 27. Observe that 39 =13 -3 and 117 = 39 - 3.
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The same relationship occurs with the powers of 2. The length of the cycle of
Py(—1) is 12 modulo 4; 24 modulo 8, 48 modulo 16 and 96 modulo 32. Observe
that 24 = 12 -2, 48 = 24 - 2 and 96 = 48 - 2. This also happens for powers of 6.
Let L,= denote the length of the cycle of any of the three sequences Py(1), Py(—1),
r;) modulo p®. Then we observe that the lengths of the cycles of P,(—1) are the
following:

Lye =327 L3 =13-3"! Lge = 39 - 471
Moreover, the lengths of the cycles of Py(1) are:
Lye =3-2° Ly =13-3""1  Lg =39.27"
Finally, the lengths of the cycles of r; are:
Ly = 3-2°71 L. =13-3°71 Lgz = 13-6°71

The following three tables summarize the length of the cycles modulo powers of
2, 3 and 6 for Py(—1), Py(1) and ry respectively. The powers of 2 are marked with
blue, the powers of 3 are marked with red and the powers of 6 are marked with
green.

mod 3 4 8 9 16 27 32
length 13 12 39 24 39 48 117 96 156

Table 5: Relationship between the modulo and the length of the cycle for Py(—1).

mod 3 4 8 9 16 27 32
length 13 12 39 24 39 48 117 96 78

Table 6: Relationship between the modulo and the length of the cycle for Py (1).

mod 3 4 8 9 16 27 32
length 13 6 13 12 39 24 117 48 78

Table 7: Relationship between the modulo and the length of the cycle for ry.
Now we recall the conjecture stated in Section |6.1
The series Yy - n*n! only converges to an integer for k = 1.

Because, by Observation 6.1, Py 1(—1) = P,(0) = s, this conjecture is equiva-
lent to the following:

Conjecture 7.8. The number Pi(—1) is 0 only for k = 2.
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Even though cycles only occur under the conditions stated in this section (using
the opposite modulo n whenever P(—1) is negative), this is not relevant whenever
Py(—1) is zero modulo n. Therefore, with our variation of computing these con-
gruences, we obtain cycles if n is a power of 2, 3 or 6, which are very useful when
we consider the case in which Py(—1) is zero modulo n. For the values of n such
that there exist these cycles we mark whenever Py(—1) is zero modulo n. Our main
idea is the following: If P.(—1) is not 0 modulo n for any value of n, then Py(—1)
cannot be zero, which means that the series does not converge to an integer. So for
instance, in the cycle of length 12 generated by n = 4 there are two zeroes: in the
first place of the cycle and in the 10" place of the cycle. Because it is a cycle, it
means that P,(—1) can be zero only if k = 2 or kK = 11 modulo 12 (because we start
the cycle at k = 2).

We can improve these results by combining different cycles. Combining the cycles
for n = 3,4,27,81 and using the Chinese Remainder Theorem [32] we obtain the
following;:

Observation 7.9. Pi(—1) can be zero only if k =2 or k = 1010 modulo 1404.

Because we use n = 3,4, 27,81, we combined the length of each cycle and com-
puted the least common multiple, which is 1404. We checked all zeroes of each
cycles until 1404 and found out that P.(—1) is zero modulo 3, 4, 27 and 81 only
when k£ = 2 and k& = 1010. Therefore, because this is cyclic, we can generalize this
result modulo 1404. Clearly, by combining even more cycles we could obtain better
results. However, we would never eliminate one zero: P;(—1) = 0 modulo n for
any value of n, because > n¥n! converges to an integer when k = 1. The following
picture shows how we investigated the different cycles using their zeroes modulo
powers of 2 and powers of 3.
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mOD 2 MOD 3 MO0 4 0D 6 0D 3 0D 3 rACD 16 MOD 32 rOD 27 MOD 51

1] 0 0 0 0 0 0 1] 1] ]
1 2 3 5 7 8 L] k1l 26 80
1 1 1 1 1 1 1 1 1 1
a 2 2 2 2 2 2 2 2 2
1 0 3 3 7 0 i 23 L 72
1 0 1 3 1 0 9 9 9 3
a 2 2 2 2 5 2 L 23 50
1 0 1 3 5 3 5 21 3 57
1 2 1 5 5 8 13 29 ] [
a 2 0 2 4 2 4 4 20 74
1 2 1 5 5 8 13 29 ] [
1 1 1 1 5 i 5 5 16 70
a 1 0 4 0 i 0 1] 16 B
1 0 3 3 3 0 3 19 L 45
1 2 1 5 5 5 13 13 23 50
a 1 2 4 2 4 2 2 13 13
1 2 3 5 3 5 1 1 23 23
1 0 1 3 5 0 13 29 9 36
a 0 2 0 2 0 0 26 9 3
1 2 1 5 1 5 1 17 5 32
1 0 1 3 1 6 9 25 L E3
a 2 0 2 4 8 12 12 26 53
1 2 1 5 1 5 9 9 5 ]
1 2 1 5 1 5 9 25 23 23
a 1 0 4 0 1 0 1] Lt i
1 1 3 1 7 1 7 23 1 55
1 0 1 3 1 3 9 9 3 30
a 2 2 2 2 5 2 2 5 5
1 1 3 1 7 7 LT LT 7 &1
1 2 1 5 1 5 1 1 23 77
a 0 2 0 2 3 2 2 21 45
1 0 1 3 5 6 13 29 L L]
1 2 1 5 5 5 5 5 4 4
a 0 0 0 4 0 4 20 L 45
1 2 1 5 5 5 5 5 4 4
1 2 1 5 5 8 13 29 26 53
a 2 0 2 0 8 0 1] 8 [
1 1 3 1 3 1 1 1 L 73
1 1 1 1 5 1 5 21 L 46

Figure 14: Data collected and analyzed to obtain the results on the number of
zeroes in the combined cycles. In different colors we mark the zeroes.

8 Conclusions

In this part of the work we have investigated a recent topic in mathematics: p-adic
analysis. It has been a very challenging experience to learn a whole theory about a
new branch of mathematics. Our work focused on some uses of the factorial function,
mainly p-adic series in which the factorial function is involved.

After studying background of p-adic numbers, including Newton’s Method and
Hensel’s Lemma, the main goal of this work has been the conjectural p-adic irra-
tionality of > n!. It is believed to be irrational for all primes p, but there is no
known proof. In this work we considered a p-adic analogue of the factorial function
inspired by Stirling’s formula and based on Legendre’s formula. One of our main
results is that the series whose general term is this p-adic analogue converges to an
irrational p-adic integer for all p. This result has been included into an article that
was posted in the arXiv database [3].
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We also considered the series > >2  n*(n+m)! and one of our conjectures is that
S on*(n + m)! only converges to an integer for K = 1 and m = 0; k = 2 and
m = 1; k =5 and m = 1. We provided a recursive method to compute the sum
of these series in terms of polynomials Py (m). Moreover, we described a recursive
formula for computing Py(—1), Px(1) and r, = P.(—1) — Px(1). Using arguments
from modular arithmetic, another relevant result is that the series > - n*(n +1)!
does not converge to an integer if £ =0 (mod 3) or k =1 (mod 3).

Although we consider that we have obtained significant results about p-adic
series containing factorials, we have encountered conjectures that still need to be
proven. We believe that the sequence ry introduced in the last section of this work
can lead to stronger results because of our observation that Py(—1) and Py(1) are
cyclic modulo n when n is a power of 2, 3 or 6. Further results might be obtained
by inspecting for which values of m we have that Py(m) is cyclic modulo n for a
fixed value of n.

Most of our conclusions and proofs were obtained after running C++ programs
that we wrote for this purpose. Outputs of those programs provided large amounts
of numerical evidence supporting the conjectures that we formulated and guiding
our way to the new results contained in this work.

9 Appendix

9.1 Code

In this section we provide the code of the programs used for this work. For all the
programs in this section we include the code and an example of the output.

Newton’s Method

m AW

Fldouble der (double f, double fn, double n, double r, double s, double v, vector <int> coef, vector <int> deri, int p, int q){
Hif (p<5){

9 double fd=0;

10 fn=0;

11 |= for (int i=0; i<n; i++){

12 fd = £d + deri[i]*pow(v, (deri.size()-1-i));
13 }

for (int i=0; i<n+l; i++){

15 fn = fn + coef[i]*pow (v, (coef.size()-1-1));
16 }

17 v =v - (fn/fd);

18 ptt;

19 return der(f, fn, n, r, s, v, coef, deri, p, @i
20 }

21 |Helse{

22 return v;

23 }

24 }

-
IS
i

26 |Fldouble bolz (double f, double fn, double n, double r, double s, double v, vector <int> coef, vector <int> deri, int p, int )|
27 ||s=0.01;

28 if (£40){

29 while (£n<0) {

30 £n-0;
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El for (int i=0; i<n+l; i++){
fn = fn + coef[i]*pow(r+s, (coef.size()-1-1));

= s+0.01;

T

v = r+s-0.01;
fn = 0;
= for (int i1=0; i<n+l; i++){
fn = fn + coef[i]*pow(v, (coef.size()-1-1));
r }
return der(f, fn, n, r, 5, v, coef, deri, p, a);

= if (f>0){
while (£n>0) {
fn=0;
= for (int i=0; i<n+l; i++){
fn = fn + coef[i]l*pow(r+s, (coef.size()-1-1));

}
s = s+0.01;

=] for (int i=0; i<ntl; i++){
fn = fn + coef[i]*pow(v, (coef.size()-1-1));
r }
return der(f, fn, n, r, s, v, coef, deri, p, a);

rt
-1

Cifloat sii(double f, double fn, double n, double r, double s, double v, vector <int> coef,

61 £=0;

62 fn=0;

63 v o= v+0.1;

64 & for (int i=0; i<n+1; i++){

65 f =f + coef[i]l*pow(v, (coef.size()-1-1));

<13 F }

67 = for (int i=0; i<n+1; i++){

€8 fn = fn + coeflil*pow(v+0.01, (coef.=ize()-1-1));
€9 - }

70 r = v;

71 return bolz(f, fn, n, r, s, v, coef, deri, p, q);
72 = }

73

74

75 |[Hint main() {
76 double n, a, r=0, £=0, fn=0, s=0.01, p=0, wv=0, g=0, t=0;

77 wvector <int> coef;

78 vector <int> deri;

79 cout<<"Introduelx el grau del pelinomi: "7
80 ain>>n;

81 g=n;

82 cout<<"Intraodusix els gosficlents en grdrg: "<<endl;
83 |Hfor (int 1=0; i<n+l; 1i++){

84 cin>>a;

85 coef.push_back(a);

86 r}

87 cout<<"———"<<endl;

88 Sfor (int i=0; i<n+l; i++){

89 deri.push back((coef.size()-1-i) *coef[i]);
90 r = r + abs(coef[1]);
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85 coef.push back(a);

86 F}

87 cou "———"<<endl;

88 |Ofor (int i=0; i<n+1; 1i++){

89 deri.push _back((coef.size()-1-i)*coef[il]);
90 r = r + abs(coef[1]);

91 F}

92 deri.pop_back();

93

94 |Hfor (int i=0; i<n+1; i++){

95 £f =£f + coef[i]*pow (-, (coef.size()-1-1));
96 r}

97 |Dfer (int i=0; i<n+l; 1i++){

98 fn = fn + coef[i]*pow(-r+s, (coef.size()-1-1));
99 F}

100

101 v = bolz(f, fn, n, -r, s, v, coef, deri, p, q);
102 cout<<v<<endl;

103 qg=q1l;

104

105 EﬁwhiIECq!:[)(

106 = if (v<r) {

107 v = sii(f, fn, n, r, s, v, coef, deri, p, a);
108 cout<<v<<endl;

109 aq=q-1;

110 F}

111

112 F}

113 -1

114

the
the coeff

5

ecution time : 4

Hensel’s Lemma

@ G W R

using namespace std;

Hint hensel(int p, int j, vector<int> deri, vector<int> red,
int t=0, fpri=0, 11=0, =zz=0;
long double yy=0;
double gw, pff, ptt, fprit:
Hif (exp<l10){
I er=0;
= for (int g=0; g<n; g++){
fprit = deril[gl*pow(j, (n-a)):
fpri = fprit;
=] if (fprisp=
cout<<"ERROR"<<endl;
er = 1;
2] for (int q=0; q<n+l; q++){
¥y = yy + redlgl*pow (3, (n-q));
=] for (int kk=0; kk<exp; kk++){
Yy = yy/ps
] for (int t=0; t<p; )
ptt = yy + t*fprit;
zz = ptt;
=] if (zz%p==0){
cout<<L<<"F M Cp<" M T <expa<” + "2
qw = t:
break;

65

int exp, int n, int erx){



r H
pff = j + qw*ipow(p,exp));
j = pff;
exp++;
11 = pow(p,exp);
j = j%ll;
=) if(er==1){
return 0;
r H
=] else
return hensel (p, j, deri, red, exp, n, er):
r H
r
HDelse!
return p:
r
K
Hint main () {
int n, vy, p, zz, exp=1, i=0, er;
long double xx, vy, ee;
vector <int> coef;
vector <int> red:
vector <int> deri;
cout<<"Introdueix el grau del nolinemi: ";
cin>>n;
cout<<"Introdusix els gosficisnts en grdre: "<<endl;
COfor (int e=0; e<ntl; et++){
cin>>y;
coef.push back(y);
r¥
int a=2Z, b=3, =z=0:
67 vector <int> pr;
&8 pr .pushﬁback (2):
69 while (b<30){
70 for (a=Z: a*a<=b; a++){
1|2 if (b%a==0){
72 z=1;
13 break;
74 F}
75 3
76 |2 if (2==0)1{
77 pr.push back(b);
78
79 r}
80 z=0;
81 b = bt+Z;
82 3
83 Hfor (int i=0; i<1Z; i++){
84 E for (int j=0; j<prlil; j++){
85 red.clear () ;
86 =] for (int w=0; w<n+l; w++){
87 red.push_back(coef [wlsprl[il);
88 r b
89 ea=0;
90 yy=0:
S1 int s5=0;
92 =] for (int g=0; ag<n+l; g++){
93 ee = ee + redlgl*pow(], (n-aq)):
94 r b
95 85 = ee;
96 = if (ss%pr[i]==0){
97 p = prlil;
98 for (int ii=0; ii<n+l; ii++){
99 deri.push_back((coef.size()-1-i)*coef[i]);
100 r}
101 deri.pop_back();
102 cout<<J<<" + ";
103 cout<<hensel (p, j, deri, red, exp, n, er)<<endl;
104 cout<<"MOD "<<pr[i]<<" xl = "<<j<<endl;
105 r H
106 r }
107 r}
108 }
109 £
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ree of the polynomial:
ents in o :

p-Adic inverses

1

2

3 ctor>

4 using namespace std;

5

[ int recur(int r, int p, int j, int passau, int passados, int c, int exp){
7 Eif (c= {

8 return 0;

S |rt

10 |[Helse

11 passados = p-passau;

12 j = (r*passados) %p:

13 conb<J <M CpICM T CCerp<<” + ")

14 passau = (passau+r¥j)/p;

15 ct+i

16 expt+;

17 return recur(r, p, J, passau, passados, c, exp);:
ik} F

19 5
20
21 |Bint main(){
22 int n, d, r, passau, passados, p, c=0, exp=1;
23 cont<<"Introdueix =1 numerador: "<<endl:
24 cin>>n;
25 cont<<"Introdusix el deneominador: "<<endl;
26 cin>>d;
27 int a=2, b=3, =z=0;
28 vector <int> pr:
29 pr.push back(2):

for (a=2; a%a<=b; a++){

30 |mwhile (b<30){
g if (b%a==0){
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int a=2, b
vector <int> pr;
pr.push back(2);
while (b<30){
for

(a=2;

(z {
pr.push back(b) ;

Ofor (int
for (int j= j<pr
if ((d*]) gpr(i]

r = j:
cout<<"MOD"<<pr [
cout<<r<<" + ";
passau (d*3) /pr[i]:

p = prlil;

cout<<recur (r,

o, Js

o
B
T

the numerator:

the

20

denomir

tor:

using namespace std:
] string intZstring(int n){
stringstream s;
s << n; RasaA 3 865
return(s.str());
[(Biginteger base(BigInteger n, BigInteger b, BigInteger res,
2| if (n>=b)
n/b) *b;
help) ;
base(n, b, res, cops, help, v);
=]
| 0; i<v.size(); i++)
string aa;
BigInteger a = stringToBigInteger(aa);
a = v[v.size{)-1-i);
3| for{int §=1; j<v.size()-i; j++
a = a%10;
zes = resta;

cout<<resc<endl<cendl :

68

passau,

int cops,

passados,

c, exp)<<endl;

Section 2.5.

BigInteger help, vector<BigInteger> v){



a |

42

43 Hint main()

44 P

45 P

a6 cout<<"Introduce until what n: ";

47 int finsn;

48 cin>>finsn;

49 cout<<"Introduce base: ";

50 string bb;

51 cin>>bb;

52 BigInteger b = stringToBigInteger (bb);

5]

54 string ress;

55 BigInteger res = stringToBigInteger(ress);
5& res = 0;

57 string helpp;

o8 BigInteger help = stringToBigInteger (helpp);
59 help = 0;

60 vector<BigInteger> v;

61 string unnn;

62 BigInteger unn = stringToBigInteger (unnn);
63 unn = 1;

[ string dosnn;

65 BigInteger dosn = stringToBigInteger(dosnn);
(1 dosn = 2;

&7 string totall;

68 BigInteger total = stringToBigInteger(totall);
69 total = 1;

70 =] for{int i=1; i<=finsn; i++){

71 string iii = int2string(i);

72 BigInteger ii = stringToBigInteger({iii);
73 unn = unn*ii;

T4 cout<<"factorial: "<<unn<<endl;

15 total = total + unn;

Te cout<<"convergence: "<<total<<endl;

77 base{total, b, 0, 0, 0, ¥);

78 F }

p-Adic approximation of ) n!: Legendre’s formula

This code computes the number of ending zeroes of n! using Legendre’s formula for
n—=Sp(n)
a given base. Then it computes the convergence of the series Y p 1 in /s
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Hint main() {

cout<<"Introduce until what n: ";
int finsn;
cin>>finsn;

cout<<"Introduce base: ";

"

string bb;

cins>bb;

cout<<endl;

BigInteger b = stringToBigInteger(bb);

vector<BigInteger> resultat;
string converr;

BigInteger conver = stringToBiglnteger (converr);

conver = 0;

for(int i

; i<=finan; i++){
cout<<"pum: "<<i<<endl;
vector<BigInteger> v;
string iii = intZstring(i);

BigInteger ii = stringToBigInteger(iii};

string copss;

BigInteger cops = stringToBigInteger{copss);

cops = 0O;

string nn;

BigInteger n = stringToBigInteger(mn);
n = ii;

string helpp;

BigInteger help = stringToBigInteger{helpp);

while (n>=b) {
help = n - (n/b)*b;
v.push_back{help);
n = n/b;
copatd;

string son;

BigInteger sn = stringToBigInteger(smnn);

sn = 0;
v.vush backinl:

& for(int k=0; kev.size(); k++) [

string aa;

a = v[v.size()-1-k];
cout<<a<<" ";
sn = snta;

string ressu;

ress = (ii-smn)/(b-1);

string pp;

p = b;

string jj;

j = ress;

(=] if(ress==0){
p= Ll

r }

ﬁ else|
] while (j>1){

P = prb;
==
r }
r }
conver = conver + p;
w.clear();
base(conver, 0, b, 0, 0,
cout<<vendl<<endl;

70

cout<<endl<<"gn: "<«<sn<eendl<<"legen:

BigInteger p = stringToBigInteger(pp):

BigInteger j = stringToBigInteger{jjl:

cout<<"pot: "<<p<<endl<<"gonyer:

BigInteger a = stringToBigInteger(aa);

BigInteger ress = stringToBigInteger{ressu};

"c<resa<<endl;

resultat) ;



until what n: 3@
co =]

se

Values of s

This code computes the coefficient of « in the sum of the series > n*n! (the value
of s1) and the coefficient of v in the sum of the series Y n”*(n + 1)! for each k.
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1 #include<iostream:>

2 #include<vector>

3 #include<cmath>

4 #include<set>

3 #include<string>

a #include<sstream>

7 #include "BigIntegerLibrary.hh"

8

el
10 using namespace std;
11
1z £ string int2string({int n){
13 stringstream s;
14 s << n; passa a ger
15 return(s.strc|));
16 =1
17
i8 Elint main () {
15 cout<<"Introduce until what n: ";
20 int non;
21 cin>>nnn;
22 string nn = intZ2string(nnn);
23 BigInteger n = stringToBigInteger(nn);
24 vector<BigInteger> wres;
25 vector<vector<BigInteger> > vpoll (nnn+l);
26 vector<vector<BigInteger> > vpol2 (nnn+l);
27 vres.push back(-1);
28 string unn;
29 BigInteger un = stringToBigInteger (unn) ;
30 un = 1;
31 vector<BigInteger> alpha;
32 vector<BigInteger> indep;
23 string alphanumm;
2k BigInteger alphanum = stringToBigInteger (alphanumm);
28 string indepnumm;
36 BigInteger indepnum = stringToBigInteger (indepnumm) ;
37 string sumafactt;
38 BigInteger sumafact = stringToBigInteger (sumafactt);
38 sumafact = 0;

40 alpha.push back(1l);

41 alpha.push back(0);

42 indep.push back(1);

43 indep.push back(-1);

44 vpoll[1] .pEsh back(1);

45 vpoll[1] .push:back[L] H

46 vector <vector <BigInteger> > bino (nnn);

47 bino[0] .push_back(1);

48 bino[1] .push _back(1);

49 bino[1].push_back(1};

50 =] for{unsigned long long int i=Z; i<nnn; i++) {
51 cont<<gndl<<endl:

52 bino[i].push back(l};

i (=] for (unsigned long long int j=I1; j«i; j++){
54 bino[i] .push back(bino[i-1][j-1]+bino[i-1][]]);
o gout<<hing

s6 |+ }

= bino[i].push back(1l};

58 i }

59 =] for{int i=Z; i<nnn; i++){

60 alphanum = 0;

61 indepnum = 0;

62 string ii = int2string(i);

63 BigInteger iii = stringToBigInteger(ii);

a4 wvpoll[i].push back(1l};

&5 Souk

(13 (=] for(int j=1; j<i; j++){

a7 string jj = int2string(j);

68 BigInteger jjj = stringToBigInteger(jj);
(] vpoll[i] .push back(vpoll[i-1][j]+iii*vpoll[i-1]1[j-11);
T0

71 al\}’:rvi’;;Mnum\M;M;lphanum + vpoll[i] [j]*alpha[i-j];
72 indepnum = indepnum + vpoll[i] [j]*indep[i-j];
73 |+ }

T4 vpoll[i] .push back({vpoll[i-1][i-1]*i);

75 combe<malll endl

Ta alphanum = alphanum + vpoll[i][4i];

.4} indepnum = indepnum + voolllillil:
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un = un* (11i-1);

sumafact = sumafact + un;
cout<<"alphal: "<<(alpha[0]-alphanum)<<endl;
alpha.pusl k (alpha[0] -alphanum) ;

"

cout<<"indsp.
indep.push back(-
string alphaconverr;

{-indepnum-sumafact) <<endl;
indepnum-sumafact) ;

BigInteger alphaconver = stringToBigInteger(alphaconverr);

alphaconver = 0;
string indepconverr;

BigInteger indepconver = stringToBigInteger(indepconverr);

indepconver = 0;
indep([Q]
for (int k++) {
if (k¥2==0
alphaconver = alphaconver + (bino[i
indepconver = indepconver + {binoli
else|
alphaconver = alphaconver + (bino[i
indepconver = indepconver + (bino[i

indep[0
cout<<"alpha2
cout<<"jindepl:

cout<<endl;

"<<alphaconver<<endl;
"<<indepconver<<endl;

]*alpha[i
]*indep[i

l*alphali
]*indep[i
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Sum of the series Y n*(n + m)!

This code computes the coefficient of a for the sum of the series Y n*(n + m)!,
for all possible combinations of k£ and m. This is the main program of the whole
work, because it computes the generalization of the series that helped come up with
Conjecture 6.2.

1 #include<iostream>
2 #include<vector>
3 #include<cmath>
4 #include<set>
g #include<string>
[ #include<sstream>
7 #include <bits/stdct+.h>
8 #include "BigIntegerLibrary.hh"
8
10
11 using namespace std;
12
13 [ string intZ2string(int n){
14 stringstream s;
15 s << n; rassa a 38%
16 return{s.str());
17 =
18
18 |Hint main{}{
20 cout<<"Introduce until which k, n"k: ";
21 int mmm;
22 cin>>mmm;
23 string mm = int2string(mmm);
24 Biglnteger m = stringToBigInteger (mm);
25 cout<<"Introduce until what r, n*k(n+r)!: ";
26 int nnn;
27 cin>>nnn;
28 string nn = int2string(nnn);
29 Biglnteger n = stringToBigInteger(mn);
30 vector<BigInteger> vres;
31 vector<vector<BigInteger> > wvpoll (nnn+1);
32 vres.push back(-1);
33 string unn;
34 BigInteger un = stringToBigInteger (unn);
35 un = 1;
36 vector<BigInteger> alpha;
27 vector<BigInteger> indep;
38 string alphanumm;
38 BigInteger alphanum = strinoToBioInteger(alcvhanumm):
40 string indepnumm;
41 BigIlnteger indepnum = stringToBigInteger({indepnumm);
42 string sumafactt;
43 BigInteger sumafact = stringToBigInteger(sumafactt);
44 sumafact = 0;
43 alpha.push back(l);
46 alpha.push back(0);
47 indep.push_back(l);
48 indep.push back(-1};
49 vpoll[l].push back(l);
50 vpoll -push_back(1);
a1l vector <vector <BigInteger> > bino (nnm);
52 bino[0].push_back(l);
53 bino[1].push_back(1);
24 bino[1].push back(l);
55 = for{unsigned long long int i=2; i<nnn; i++)
513 sonk<<endl<<end]:
57 bino[i] .push back(l);
58 = for (unsigned long long int 3 Jeip ) {
29 bino[i].push back{bino[i-1] [j-1]+bino[i-1][3]);
&0 sauk<<bing
61 o 1
82 bino[i] .push back(l);
83 i }
64 =] for(int i=Z; i<=mmm; i++){
(3] alphanum = 0;
(19 indepnum = 0;
87 string ii = int2stringi(i);
(1] BigInteger iii = stringToBigInteger(ii);
69 wpoll[i] .push back(1);
70 [oehon=
71 (=] for(int j=1; j<i; j++){
T2 string jj = int2string(j);
73 BigInteger jjj = stringToBigInteger{(jj);
T4 vpoll[i].push back({vpoll[i-1][jl+iii*vpoll[i-1][3-11);
75 cont<aynal.
Te alphanum = alphanum + vpoll[i] [j]l*alphali-j];
77 indepnum = indepnum + vpoll[i] [j]*indep[i-j];
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120

128

sumafact = sumafact *+ un;

alpha.push back (alph:

1ndep.pus|

string 1i = int2stri
BigInteger iii = str
for(int ¥k=1; k<nnn;

2

ng
1ng
k-

alphanum) ;

vector<vector<BigInteger> > vpol2 (nnn+l);
. k.

alohanun

if(re

alphanun

cout<<alphanum;

cout<<endl

qaw; gtt)
.push_back (vpol2[w-1

revpol2[i] .size(); r++)

alohanum + voel2(i

alphanum -

(vpolz(i

ql+vpol2[u-1

“k) 7

Tri*alohali-rl:

1) *alphali-zl;

75




9.2 Webpage

We also include screenshots of the webpage we created with all the concepts and
C++ programs that are found in this work. The webpage is called Number Theory
and Group Theory. The URL is

https://numbertheoryandgrouptheory.yolasite.com/

[ Number theory and Gro. X e — X

< C (0 & Esseguro | https;//numbertheoryandgrouptheory.yolasite.com/Newton's-Method.php Q & W [+]

NUMBER THEORY AND GROUP THEORY  rove meaumor

Tangent at x,

/’ Tangent at x,

[ Number theory and Gro: x e

< C (0 & Esseguro | https;//numbertheoryandgrouptheory.yolasite.com/inverse.php

76


https://numbertheoryandgrouptheory.yolasite.com/

Bibliography

1]

2]

[10]
[11]

[12]

[13]

[14]

[15]

N. C. Alexander, Non-vanishing of Uppuluri-Carpenter numbers, preprint,
http://tinyurl.com/oo36das.

J. Bertrand, Mémoire sur le nombre de valeurs que peut prendre une fonc-
tion quand on y permute les lettres qu’elle renferme, Journal de I’Ecole Royale
Polytechnique, 30:123-140, 1845.

Hermite, Irrationality of the sum of a p-adic series, arXiv: Reference is omitted
in this anonymous version.

Hermite, The On-Line Encyclopedia of Integer Sequences: Reference is omitted
in this anonymous version.

Hermite, The On-Line Encyclopedia of Integer Sequences: Reference is omitted
in this anonymous version.

K. Conrad, Hensel’s Lemma, University of Connecticut.

K. S. Davis and W. A. Webb, Lucas’ theorem for prime powers, Furopean
Journal of Combinatorics, 11:229-233, 1990.

B. Dragovich, On summation of p-adic series, arXiv:1702.02569, 2017.

B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, 1. V. Volovich. On p-adic
mathematical physics, p-Adic Numbers, Ultrametric Analysis, and Applications,
vol. 1, no. 1, March 2009.

J. Evertse, p-Adic Numbers, March 2011.

P. Fannon, V. Kadelburg, B. Woolley and S. Ward, Discrete Mathematics for
the IB Diploma, Pearson, 2013.

P. Garrett, Classical definitions of Z, and A, University of Minnessota, 2010.

A. Granville, Harald Cramér and the distribution of prime numbers, Scandina-
vian Actuarial Journal, 1995:337-360, 1995.

D. Heath-Brown, Gaps between primes, and the pair correlation of zeros of the
zeta-function, Acta Arithmetica, 41:85-99, 1982.

H. Hutter, M. Szedldk, P. Wirth, Elementary Analysis in Q,, November 2011.

7



[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

2]

[27]
28]

[29]

[30]

[31]

[32]

A. E. Ingham, The Distribution of Prime Numbers, Cambridge University Press,
1932.

N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, Springer,
Berlin, 1948.

E. Kummer, Uber die Erginzungssitze zu den allgemeinen Reziprozititsgeset-
zen, Journal fir die reine und angewandte Mathematik, 44:93-146, 1852.

A. M. Legendre, Théorie des Nombres, Paris: Firmin Didot Freres, 1932.

E. Lucas, Théorie des fonctions numériques simplement périodiques, American
Journal of Mathematics, 44:184—196, 1878.

M. R. Murty and S. Sumner, On the p-adic series > ., n*(n+m)!, CRM Proc.
Lecture Notes vol. 36, pp. 219227, Amer. Math. Soc., Providence, RI, 2004.

J. Nagura, On the interval containing at least one prime number, Proceedings
of the Japan Academy, 1952.

S. Niizeki and M. Araki, Simple and clear proofs of Stirling’s formula, Interna-
tional Journal of Mathematical Education in Science and Technology, vol. 41,
no. 4, 2010.

A. Y. Osban, Some new variants of Newton’s Method, Applied Mathematics
Letters, 2004.

G. Paz, On Legendre’s, Bocard’s, Andrica’s and Oppermann’s conjectures,
arXiv:1310.1323, 2014.

A. Robert, A Course in p-Adic Analysis, Graduate Texts in Mathematics,
Springer, New York, 2000.

J. S. Rose, A Course on Group Theory, Dover Books on Mathematics, 2003.

W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis,
Cambridge University Press, Cambridge, 1984.

J. Shareshian and R. Woodroofe, Divisibility of binomial coefficients and gener-
ation of alternating groups, Pacific Journal of Mathematics, 292:223-238, 2018.

L. Shoenfeld, Sharper bounds for Chebyshev functions ¥(z) and 6(x), ii, Math-
ematics of Computation, 1976.

D. Subedi, Complementary Bell numbers and p-adic series, Journal of Integer
Sequences, 17 (2014), article 14.3.1.

I. Wazir and T. Garry, Mathematics Higher Level for the IB Diploma, Pearson,
2012.

78



	I On the Divisibility of Binomial Coefficients
	Introduction
	Background
	Some cases of n satisfying Condition 1
	When n is a prime power
	When n is a product of two prime powers

	Considering the closest prime to n
	Bounds for piai
	When n-q > piai > n-2q2
	If n is odd
	If n is even and pi is not 2
	If n is even and pi is not 2
	Some cases in which 2n implies n

	Large multiples of n satisfying Condition 1 with prime gap conjectures
	Cramér's Conjecture
	Oppermann's Conjecture
	Riemann's Hypothesis
	Using other primes to satisfy Condition 1
	The 3-variation of Condition 1
	Regarding the two highest prime powers of n

	Bounds on the number of primes needed to satisfy the N-variation of Condition 1
	First upper bound with prime factors of n
	Second upper bound with d
	Third upper bound
	Fourth upper bound with Diophantine equations


	Computational results
	When we fix a prime
	How many pairs of primes satisfy Condition 1
	Multinomials
	Conclusions
	Appendix
	Sequences of integers that do not satisfy the inequality for n-dpd
	C++ code for finding all the possible pairs
	Webpage about this problem

	II p-Adic Series Containing the Factorial Function
	Introduction
	Calculating with p-adic numbers
	p-Adic expansions of roots of polynomials
	p-Adic inverses
	Newton's Method
	Hensel's Lemma

	p-Adic convergence
	p-Adic norm
	Norm of a factorial

	p-Adic series
	The series n!
	Convergence in Zp
	Rationality of p-adic expansions
	A p-adic approximation of n!
	Irrationality of pn-Sp(n)p-1

	Regarding the irrationality of n!
	Convergence of other p-adic series with n!
	First type of series
	A variation of the previous series
	Generalizing further
	Properties and cycles of Pk(-1) and Pk(1)
	Cycles of Pk(1) and Pk(-1)
	Conclusions
	Appendix
	Code
	Newton's Method
	Hensel's Lemma
	p-Adic inverses
	Convergence of n!
	p-Adic approximation of n!: Legendre's formula
	Values of sk
	Sum of the series nk(n+m)!

	Webpage


















