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Preamble

This essay contains the results of a research project on number theory focusing
on two open problems that involve the factorial function. This project originated
in a mathematics class at school in September 2016 where Stirling’s formula was
discussed. I was intrigued by the fact that the square root of the quotient nn/n!
happened to be very close to the nth Fibonacci number, at least for not too large
values of n. This observation triggered my interest for the factorial function.

At the same time I had started reading about the ring of p-adic integers (which
is an extension of the ordinary integers by allowing base p expansions to become
infinite), and learned that many features of ordinary calculus have analogues in the
p-adic numbers, for instance the convergence of sequences and infinite series. Then
I wondered if there was also a p-adic version of Stirling’s formula, providing a non-
recursive way of approximating factorials. While pursuing this idea I discovered that
p-adic analysis is a rich discipline, relatively recent in the body of mathematics.

Although most topics in p-adic analysis are too advanced, I discovered a surpris-
ingly unsolved problem by browsing the Internet, namely the series

∑
n! converges

in the p-adic metric for all primes p and it is not known whether its sum is rational
(i.e., the quotient of two ordinary integers) or irrational. The fact that

∑
n! con-

verges can easily be seen in base 10 by observing that when n grows large enough
the lowest digits of the partial sums become unchanged since the subsequent terms
being added are divisible by increasingly high powers of 10.

After several months of effort I could not find a proof of the fact (conjectured
since 1984) that

∑
n! is a p-adic irrational for all primes p, yet I obtained several

partial results which contribute to this open problem. I could prove, among other
facts, that

∑
pvp(n!) converges to an irrational number for every p, where vp(n!)

denotes the highest power of p dividing n!. This result is the subject of a short
article [3] which has been posted in the arXiv database —the reference is not given
since this is an anonymous version of the essay.

Meanwhile, my interest for the factorial function led me to work in another so
far unsolved problem, proposed in an article that appeared in the arXiv in 2017.
It was an apparently simple conjecture about binomial coefficients, with relevant
implications in group theory. Specifically, it was conjectured that for every positive
integer n there exist two primes p and r such that all binomial coefficients

(
n
k

)
are

divisible by either p or r if 1 ≤ k ≤ n− 1.
I became very much engaged with this problem and succeeded in proving the

truth of the conjecture in many cases. It is easy to see, using Lucas’ Theorem, that
the conjecture holds when n is a prime power or a product of two prime powers.
I proved that the conjecture also holds when the difference between n and the
greatest prime smaller than n is smaller than some prime power dividing n, and
refined this result in various ways. Two sequences of numbers for which our remarks
do not suffice to prove the conjecture were accepted for publication in the On-Line
Encyclopedia of Integer Sequences [4, 5].
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We also found other assumptions under which the conjecture is true. For exam-
ple, every n has infinitely many multiples for which the conjecture holds, assuming
the truth of Cramér’s Conjecture.

Interestingly, some results in this part of our work are based on the same ap-
proximation of n! by powers of a prime p dividing n! (Legendre’s formula) that were
used in the part concerned with p-adic analysis.

The two open problems that I have studied are the subject of Part I and Part II
of this essay. The first part corresponds to the problem on divisibility of binomial
coefficients, and the second part is devoted to convergence of p-adic series containing
the factorial function. We present them in two separate parts because the first part,
entitled On the divisibility of binomial coefficients, is what is going to be presented
as an extended essay for the International Baccalaureate. More precisely, due to the
word limit, we are going to present this first part with sections 8, 9 and 10 shifted
to the Appendix, since, although these sections contain interesting results, they are
not completely focused on the main objective of our project.

I should also mention that I have created a website in which all the C++ pro-
grams that were used to obtain numerical evidence in this work are made available
to other people who could perhaps continue this research or go towards other goals.
This website also contains explanations of the mathematical concepts involved in
the problems that we have studied. The address is

https://numbertheoryandgrouptheory.yolasite.com/
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Part I

On the Divisibility of Binomial

Coefficients

Is it true that for every positive integer n there are two primes p and r

such that if 1 ≤ k ≤ n − 1 then
(
n

k

)
is divisible by at least one of p or r?
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1 Introduction

Apart from their many uses in various fields of mathematics, binomial coefficients
display interesting divisibility properties. Kummer’s [18] and Lucas’ [20] Theorems
are two remarkable results relating binomial coefficients and prime numbers. Kum-
mer’s Theorem provides an easy way to determine the highest power of a prime
that divides a binomial coefficient, and Lucas’ Theorem yields the remainder of the
division of a binomial coefficient by a prime number. Davis and Webb [7] found
a generalization of Lucas’ Theorem for prime powers. Legendre [19] found two ex-
pressions for the largest power of a prime p that divides the factorial n! of a given
integer n.

However, some conjectures about binomial coefficients still remain unproven. We
focus on the following condition considered by Shareshian and Woodroofe in a recent
paper [29]:

Condition 1. For a positive integer n, there exist primes p and r such that, for all
integers k with 1 ≤ k ≤ n−1, the binomial coefficient

(
n
k

)
is divisible by at least one

of p or r.

This condition leads to the following question:

Question 1.1. Does Condition 1 hold for every positive integer n?

In [29] it is conjectured that Condition 1 is true for all positive integers, yet there
is no known proof. Our main purpose in this work is to try to prove this conjecture,
which is relevant because it is an open problem with implications in number theory
and group theory. Therefore, it is very thrilling to obtain research results that might
lead to a complete proof.

We also introduce the following variation of Condition 1, which we study later
in this work:

Definition 1.2. A positive integer n satisfies the N-variation of Condition 1 if there
exists a set consisting of N different primes such that if 1 ≤ k ≤ n − 1 then the
binomial coefficient

(
n
k

)
is divisible by at least one of the N primes.

This essay is organized as follows. After providing background information in
Section 2, we prove that n satisfies Condition 1 if it is a product of two prime
powers and also if it satisfies a certain inequality regarding the largest prime smaller
than n. Next we provide bounds related to the prime power divisors of n and discuss
several cases in which n satisfies Condition 1 depending on the largest prime smaller
than n/2. In Section 6 and Section 7 we use prime gap conjectures in order to settle
some cases in which a sufficiently large integer n satisfies Condition 1, and discuss
cases in which n satisfies the 3-variation of Condition 1. Finally, in Section 8 we
provide upper bounds for a number N so that all integers n satisfy the N -variation of
Condition 1, followed by computational results and a generalization of Condition 1
to multinomials.

We have created a website that includes explanations and C++ codes of most
concepts contained in this work. The address is

https://numbertheoryandgrouptheory.yolasite.com/

Screenshots of this website are included in the Appendix.
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2 Background

Three theorems about divisibility of binomial coefficients and factorials are relevant
for the proofs given in this work.

Theorem 2.1. (Kummer [18]) Let k and n be integers with 0 ≤ k ≤ n. If α is a
positive integer and p a prime, then pα divides

(
n
k

)
if and only if α carries are needed

when adding k and n− k in base p.

Theorem 2.2. (Lucas [20]) Let m and n be positive integers, let p be a prime, and
let m = mkp

k +mk−1p
k−1 + · · ·+m1p+m0 and n = nkp

k +nk−1p
k−1 + · · ·+n1p+n0

be the base p expansions of m and n respectively. Then
(
m
n

)
≡
∏k

i=0

(
mi

ni

)
(mod p).

It is important to notice that by convention
(
m
n

)
= 0 if m < n. Hence, if any of

the digits of the base p representation of m is 0 whereas the corresponding digit of
the base p representation of k is not 0, then

(
m
k

)
is divisible by p because everything

is multiplied by zero and by Lucas’ Theorem we have that
(
m
k

)
≡ 0 (mod p). This

is usually the way in which we use Lucas’ Theorem throughout this work.
The following diagram displays an example of this property. In order to know if(

21
12

)
is divisible by 2, we represent both numbers in base 2 and compare the digits.

The key is the pair of numbers marked with red. Because the digit below (which
corresponds to 12) is larger than the number above (which corresponds to 21), from
Lucas’ Theorem we infer that

(
21
12

)
is divisible by 2.

Figure 1: Example of an application of Lucas’ Theorem.

Theorem 2.3. (Legendre [19]) If vp(n) denotes the maximum power α of p such

that pα divides n, then vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
.

Here bxc denotes the integer part of x. Moreover, Legendre also showed that

vp(n!) =
n− Sp(n)

p− 1
,

where Sp(n) denotes the sum of all the digits in the base p expansion of n.
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3 Some cases of n satisfying Condition 1

3.1 When n is a prime power

Proposition 3.1. A positive integer n satisfies the 1-variation of Condition 1 with
p if and only if n = pα for some α > 0, for α ∈ N.

Proof. If n = pα, then the base p representation of n is equal to 1

α zeroes︷ ︸︸ ︷
0 . . . 0. Any k

such that 1 ≤ k ≤ n− 1 has at most α− 1 zeroes in base p. Therefore, at least one
of the digits of the base p representation of k is bigger than the corresponding digit
of n in base p (at least the leading one). It then follows from Lucas’ Theorem that(
n
k

)
is divisible by p. Otherwise, if n is not a prime power, then the ith digit of n in

base p is not 0 for some value of i. Thus, we can find at least one k such that the ith

digit of k in base p is larger than 0. Hence, by Lucas’ Theorem
(
n
k

)
is not divisible

by p.

Corollary 3.2. If n = pα + 1, then n satisfies Condition 1 with p and any prime
factor of n.

Proof. The proof relies on the fact that
(
m
k

)
+
(
m
k+1

)
=
(
m+1
k+1

)
for all positive integers

m and k. If m is a power of a prime p, then it follows from Proposition 3.1 that(
m
k

)
and

(
m
k+1

)
are divisible by p if 1 ≤ k ≤ m− 1. In these cases, because

(
m+1
k+1

)
is

the result of the sum of two multiples of p, it also is a multiple of p. When k = 1 or
k = m, we have that

(
m+1
k

)
= m+ 1, so any prime factor of m+ 1 divides it.

3.2 When n is a product of two prime powers

Proposition 3.3. If a positive integer n is equal to the product of two prime powers
pα1 and pβ2 , then n satisfies Condition 1 with p1 and p2.

Proof. Observe that lcm(pα1 , p
β
2 ) = n. The base p1 representation of n ends in α

zeroes and the base p2 representation of n ends in β zeroes. Because any positive
k smaller than n cannot be divisible by both pα1 and pβ2 , it is not possible that k
finishes with α zeroes in base p1 and β zeroes in base p2. Thus, we can apply Lucas’
Theorem modulo the prime p1 if pα1 6 | k or modulo the prime p2 if pβ2 6 | k.

3.3 Considering the closest prime to n

After analyzing many cases in which n satisfies Condition 1, we observed that the
largest prime smaller than n was almost always one of the two primes with which n
fulfilled Condition 1. This finding led to the following statement and proof:

Theorem 3.4. Let q be the largest prime smaller than n and let paii be any prime
factor divisor of n. If n− q < paii , then n satisfies Condition 1 with pi and q.

For the proofs of Theorem 3.4 and Corollary 3.6 we use the Bertrand-Chebyshev
Theorem:
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Theorem 3.5. (Bertrand-Chebyshev [2]) For every integer n > 3 there exists a
prime p such that n/2 < p < n.

Proof of Theorem 3.4. We distinguish between two intervals: the interval (1, n− q]
and the interval (n − q, n]. Due to the symmetry of binomial coefficients, we only
consider k ≤ n/2. By the Bertrand-Chebyshev Theorem, we know that there is at
least one prime between n/2 and n, hence n/2 < q < n. Then, for all k, k < n/2 < q.
The base q representation of n is 1 · q + (n − q). Therefore, we do not need to
consider the interval (n − q, n) because the last digit of the base q representation
of any k > n − q is larger than the last digit of the base q representation of n.
Thus, by Lucas’ Theorem, the binomial coefficient

(
n
k

)
is divisible by q. If there is

no multiple of paii in the interval (1, n− q), then by Lucas’ Theorem all the binomial
coefficients

(
n
k

)
with 1 ≤ k ≤ n/2 are divisible by at least pi or q. Moreover, equality

in Theorem 3.4 cannot hold because paii divides both paii and n, and hence q would
not be a prime.

Corollary 3.6. Let p
aj
j denote the largest prime power divisor of an integer n and

q the closest prime to n. If n− q < p
aj
j , then n satisfies Condition 1 with pj and q.

We show a diagram which illustrates the proof of Theorem 3.4. The key is to
split the range of k into two intervals.

Figure 2: Illustration of the proof of Theorem 3.4.

Note that if n satisfies Condition 1 then at least one of these two primes has to
be a prime factor of n, because otherwise

(
n
1

)
= n is not divisible by either one of

the two primes.
The only remaining cases are those in which n− q > paii and n is neither a prime

nor a prime power. Let q2 denote the largest prime smaller than n/2. By analyzing
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the integers that are part of these remaining cases, we notice that n usually satisfies
Condition 1 with the pair formed by a prime factor of n and q2. If we analyze the
six numbers smaller than 2,000 such that n − q > paii , we see that the inequality
paii > n − 2q2 holds and q2 and pi satisfy Condition 1. Table 1 provides evidence
with the only four numbers until 1,000 that do not satisfy Condition 1 with q and pi.
However, the sequence of all such integers is infinite. The On-Line Encyclopedia of
Integer Sequences (OEIS) has accepted our submission of this sequence [4]. These
observations led my investigations towards q2, which are described in the following
sections.

Number 126 210 330 630
Prime factorization 2 · 32 · 7 2 · 3 · 5 · 7 2 · 3 · 5 · 11 2 · 32 · 5 · 7
q 113 199 317 619
q2 61 103 163 313
n− q 13 11 13 11
n− 2q2 4 4 4 4
(1, n− q] 2, 3, 4 2, 3, 4 2, 3, 4 2, 3, 4
(n− q, n] 62, 63 104, 105 164, 165 314, 315
Pairs that satisfy 1 3-61 5-103 5-163 3-313, 5-313, 7-313

Table 1: Information about the four numbers below 1,000 that do not satisfy Con-
dition 1 with q and pi.

4 Bounds for p
ai
i

Before analyzing q and q2 further, we establish some bounds for paii assuming that
n− q > paii .

Lemma 4.1. If n is not a prime and n− q > paii , then paii < n/2.

Proof. Using the Bertrand-Chebyshev Theorem we see that n/2 > n− q > 0. Also,
n− q > paii . Therefore, n/2 > paii .

We can find an even lower bound for paii . In 1952, Nagura [22] showed that if
n ≥ 25 then there is always a prime between n and (1 + 1/5)n. Therefore, we find
that 5n/6 < q < n when n ≥ 30.

Lemma 4.2. If n ≥ 30 is not a prime and n− q > paii , then paii < n/6.

The proof is the same as the one for Lemma 4.1. In 1976 Schoenfeld [30] showed
that for n ≥ 2,010,760 there is always a prime between n and (1 + 1/16,597)n.
Therefore, we know that if n > 2,010,882 then

16,597n

16,598
< q2 < n.

Shareshian and Woodroofe [29] checked computationally that all integers smaller
than 10 million satisfy Condition 1, which means that we can apply Schoenfeld’s
bound.
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Lemma 4.3. If n is not a prime, n > 2,010,882 and n−q > paii , then paii < n/16,598.

The proof follows the same steps as the previous two lemmas.

Proposition 4.4. Let n = paii m. If n ≥ 2,010,882 and m < 16,598, then n satisfies
Condition 1 with pi and q.

Proof. By Schoenfeld’s bound we know that n − q < n/16,598. If m < 16,598, it
means that paii > n/16,598. Thus, paii > n− q and, by Theorem 3.4, q and pi satisfy
Condition 1.

5 When n − q > p
ai
i > n − 2q2

In this section we analyze the integers n that satisfy the inequalities

n− q > paii > n− 2q2,

and we prove some cases in which n satisfies Condition 1 with pi and q2. The
fact that we are considering n − 2q2 comes from the base q2 representation of n.
We distinguish between two cases: when k < q2 and when k > q2. The base q2
representation of n is 2 · q2 + (n− 2q2). The base q2 representation of k is 0 · q2 + k if
k < q2 and 1 · q2 + (k− q2) if k > q2. Hence, there is no need to analyze the interval
(n−2q2, q2] because for all k such that n−2q2 < k ≤ q2, we can use Lucas’ Theorem
to see that the binomial coefficient

(
n
k

)
is congruent to 0 modulo q2. Therefore, we

only need to consider the interval (q2, n/2].

5.1 If n is odd

It is important to remark that if k is not a multiple of paii then by Lucas’ Theorem(
n
k

)
is divisible by pi. Therefore, we only have to analyze the integers in (q2, n/2]

that are multiples of paii . We then claim the following:

Theorem 5.1. If n is odd and n− q > paii > n− 2q2, then n satisfies Condition 1
with pi and q2.

Proof. Since n is odd, n/2 is not an integer. Hence it is enough to prove that there is
no multiple of p

aq
q in the interval (qr, n/2). We will prove this by contradiction. Thus

assume that qr < λp
aq
q < n/2 for some integer λ. Then λ ≥ (m− 1)/2 if n = mp

aq
q ,

since ((m−1)/2)p
aq
q is the largest multiple of p

aq
q that is smaller than n/2 (note that

m is odd because n is odd). Now from the inequality ((m− 1)/2)p
aq
q > qr it follows

that n− paqq > 2qr and this contradicts the assumption that n− 2qr < p
aq
q .

5.2 If n is even and pi is not 2

Lemma 5.2. If n is even and pq 6= 2, then the only multiple of p
aq
q in the interval

(qr, n/2] is n/2.
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Proof. Since pq 6= 2, the integer n/2 is still a multiple of p
aq
q . Hence we may write

n/2 = λp
aq
q for some integer λ. If there is another multiple of p

aq
q between qr and

n/2, then we have qr < (λ − 1)p
aq
q < n/2, and this implies that n/2 − p

aq
q > qr.

Hence n−2qr > 2p
aq
q > p

aq
q , which is incompatible with our assumption which states

that n− 2qr < p
aq
q .

Theorem 5.3. If 2α is a prime power divisor of n and 2α satisfies

n− q > 2α > n− 2q2,

then n satisfies Condition 1 with 2 and q2.

Proof. The integer n has the factor 2α in its prime factorization, which means that
n/2 has the factor 2α−1. The base 2 representation of n has one more zero than
the base 2 representation of n/2, which means that by Lucas’ Theorem

(
n
n/2

)
is

congruent to 0 modulo 2α. By Lemma 5.2, n/2 is the only multiple of 2α in the
interval (q2, n/2]; hence the proof is complete.

5.3 If n is even and pi is not 2

By Lemma 5.2 we only need to consider the central binomial coefficient
(
n
n/2

)
, be-

cause the only multiple of paii in the interval (q2, n/2] is n/2. We claim the following
proposition, using Legendre’s Theorem for its proof.

Proposition 5.4. The prime factor pi divides
(
n
n/2

)
if and only if at least one of

the fractions bn/pαc with α ≥ 1 is odd.

Proof. When we compare vpi(n!) and vpi((n/2)!) we see that, for each α,⌊
n

pα

⌋
= 2

⌊
n/2

pα

⌋
if bn/pαc is even. If bn/pαc is even for all α, we conclude that vpi(n!) = 2vpi((n/2)!),
and hence pi does not divide

(
n
n/2

)
. However, if bn/pαc is odd, then⌊
n

pα

⌋
= 2

⌊
n/2

pα

⌋
+ 1.

Therefore, vpi(n!) is greater than 2vpi((n/2)!).

Corollary 5.5. Let Spi(n) be the base pi representation of n. If n−Sp(n)

p−1 is odd then

pi divides
(
n
n/2

)
.

Corollary 5.5 is shown using Legendre’s formula.

Corollary 5.6. If any of the digits in the base pi representation of n/2 is larger
than bpi/2c, then the binomial coefficient

(
n
n/2

)
is divisible by pi.

Corollary 5.7. If one of the digits in the base pi representation of n is odd, then
the prime pi divides

(
n
n/2

)
.

9



Proof. The proofs of Corollaries 5.6 and 5.7 are similar. If a digit of n/2 is larger
than bpi/2c, when we add n/2 to itself in base pi to obtain n there at least one carry.
Similarly, if n has an odd digit in base pi, it means that there has been a carry when
adding n/2 and n/2 in base pi. By Kummer’s Theorem with k = n/2, if there is
at least one carry when adding n/2 to itself in base pi, then pi divides the binomial
coefficient

(
n
n/2

)
.

Corollary 5.8. If p

⌊
log(n)
log(pi)

⌋
i > n/2 and n − q > paii > n − 2q2, then pi divides

(
n
n/2

)
and therefore n satisfies Condition 1 with pi and q2.

Proof. The largest α such that pαi < n < pα+1
i is

⌊
log(n)
log(pi)

⌋
. Therefore, in Proposi-

tion 5.4, α is bounded by 1 ≤ α ≤
⌊

log(n)
log(pi)

⌋
. Also note that α ≥ ai, where ai is the

exponent of pi. If p

⌊
log(n)
log(pi)

⌋
i > n/2 then bn/pαi c = 1. Because this is odd, pi divides(

n
n/2

)
by Proposition 5.4.

5.4 Some cases in which 2n implies n

In this section we denote by paiik and qk any prime power factor of k and the largest
prime smaller than k respectively. For integers that satisfy the inequality n − q >
paii > n−2q2, we observe three cases in which if 2n satisfies Condition 1 and pi2n 6= 2,
then n also satisfies Condition 1. Note that since pi is not 2, then pi2n = pin . Also,
q22n = qn. Therefore we claim:

Claim 5.9. If 2n satisfies the inequality 2n − 2q22n < 2n − q2n < p
ai2n
i2n

, then n
satisfies Condition 1 with pi and q.

Proof. We rewrite the inequality above as n − qn < 2(n − qn) < 2n − q2n < p
ain
in

.
Therefore, n − qn < p

ain
in

, and, by Theorem 4.2, n satisfies Condition 1 with the
primes pi and q.

Claim 5.10. If 2n satisfies the inequality 2n − q2n < 2n − q22n < p
ai2n
i2n

, then n
satisfies Condition 1 with pi and q.

Claim 5.11. If 2n satisfies the inequality 2n − 2q22n < p
ai2n
i2n

< 2n − q2n, then n
satisfies Condition 1 with pi and q.

The proofs of Claims 5.10 and 5.11 follow the same steps as the one of Claim 5.9.

6 Large multiples of n satisfying Condition 1 with

prime gap conjectures

After studying these inequalities, I considered using prime gap conjectures to study
Condition 1 for large integers. In this section we always denote the tth prime as p̂t.

10



6.1 Cramér’s Conjecture

Conjecture 6.1. (Cramér [13]) There exist constants M and N such that if p̂t ≥ N
then p̂t+1 − p̂t ≤M(log p̂t)

2.

We claim the following:

Proposition 6.2. If Cramér’s conjecture is true, then for every positive integer n
and every prime p dividing n, the number npk satisfies Condition 1 for all sufficiently
large values of k.

Proof. LetM andN be the constants given by Cramér’s conjecture. Given a positive
integer n which is not a prime power and a prime divisor p of n, we write n = mpa

where p does not divide m, and compare M(log nx)2 with pax as x goes to infinity.
Using L’Hôpital’s rule, we find that

lim
x→∞

pax

M(log nx)2
= (Hôp.) lim

x→∞

panx

2Mn log nx
= lim

x→∞

pax

2M log nx

= (Hôp.) lim
x→∞

panx

2Mn
= lim

x→∞

pax

2M
=∞.

Therefore, pax is bigger than M(log nx)2 when x is sufficiently large. Hence we can
choose any k large enough so that pa+k > M(log npk)2 and furthermore, if q denotes
the largest prime smaller than npk, then q ≥ N . Now, if r denotes the smallest prime
larger than npk, we infer that, if Cramér’s conjecture holds, then, since q ≥ N ,

npk − q ≤ r − q ≤M(log q)2.

Moreover
M(log q)2 < M(log npk)2 < pa+k.

Hence npk − q < pa+k and, since pa+k is the highest power of p dividing npk, Theo-
rem 3.4 implies that npk satisfies Condition 1.

Cramér’s conjecture also proves the following proposition:

Proposition 6.3. Let m denote the number of distinct prime factors of n. If
Cramér’s conjecture is true and n grows sufficiently large keeping m fixed, then
n satisfies Condition 1.

Proof. If n has m distinct prime factors, we define the average prime factor of n
as m
√
n because if n were formed by m equal prime factors each one would equal

m
√
n. It is true that m

√
n ≤ p

aj
j , where p

aj
j denotes the largest prime power divisor

of n. Hence we must see if M(log n)2 < m
√
n for large values of n. We apply again

L’Hôpital’s rule to compute the limit

lim
x→∞

m
√
nx

M(log nx)2

and we obtain that M(log n)2 < m
√
n holds when n is sufficiently large.

11



6.2 Oppermann’s Conjecture

A weaker conjecture on prime gaps by Oppermann states the following:

Conjecture 6.4. (Oppermann [25]) For some constant M , p̂t+1 − p̂t ≤M
√
p̂t.

Proposition 6.5. If Oppermann’s conjecture is true, then for every positive inte-
ger n and every prime p dividing n, the number npk satisfies Condition 1 for all
sufficiently large values of k.

Proof. The proof is similar to the proof of Proposition 6.2. We apply L’Hôpital’s
rule once to solve the indetermination in

lim
x→∞

pax

M
√
nx
,

where pa is the highest power of p dividing n. Since the ratio goes to infinity our
inequality is satisfied, and by choosing x = pk with k large enough the proof is
complete.

6.3 Riemann’s Hypothesis

The following conjecture is a consequence of Riemann’s Hypothesis.

Conjecture 6.6. (Riemann [14]) For some constant M , p̂t+1 − p̂t ≤M(log p̂t)
√
p̂t.

This bound can be used to prove the following:

Proposition 6.7. If Riemann’s conjecture is true, then for every positive integer n
and every prime p dividing n, the number npk satisfies Condition 1 for all sufficiently
large values of k.

Proof. We apply again L’Hôpital’s rule to solve the indetermination in

lim
x→∞

pax

M(log nx)
√
nx

The limit goes to infinity and hence, by choosing x = pk with k large enough,
the proof is complete.

Due to the similarities of the inequalities, we skip the calculations of Propositions
6.5 and 6.7.

7 Using other primes to satisfy Condition 1

In Sections 3 and 5 we analyzed inequalities involving n− q and n− 2q2. This made
us realize in general, for any positive integer d, we can study the function n − dqd,
where qd refers to the largest prime smaller than n/d (when writing q1 we omitted
the subindex 1).

We consider the integers n that do not satisfy the inequality paii > n − 2p2.
Up to 1,000,000 there are only 88 integers that do not satisfy paii > n − 2p2. The

12



On-Line Encyclopedia of Integer Sequences (OEIS) has accepted our submission of
these numbers [5]. Up to 1,000,000, there are 25 integers that do not satisfy the
inequality paii > n− 3p3; 7 integers that do not satisfy the inequality paii > n− 4p4;
5 integers that do not satisfy the inequality paii > n − 5p5, and only 1 integer that
does not satisfy the inequality paii > n− 6p6. Figure 3 shows the number of integers
up to 1,000,000 that do not satisfy the inequality paii > n− dpd depending on d.

Figure 3: Number of integers up to 1,000,000 that do not satisfy the inequality
paii > n− dpd as a function of d.

We also observe that the function n−dqd tends to 0 as d increases, which means
that it is likely that at some point the inequality is achieved. This is explained with
the properties of the function n/d, which behaves in the same way as the function
1/x except for the constant n. As d grows large, the difference between n/d and
n/(d + 1) grows smaller. Hence, the closest prime to n/d is the same one for all
the n/d that are close. Then, when d increases, pd decreases much more slowly, and
because it is multiplied by d, which grows linearly, dpd tends to n. Figure 4 shows
how n − dpd tends to 0 as d increases taking 330 as an example. All the points
correspond to values of d such that pd satisfies Condition 1 with another prime.
Note that if n− dpd is exactly zero then d is a divisor of n such that n/d is a prime.

Then there are two conditions that we use for pi and qd to satisfy Condition 1.

Condition 2. For any integer n to satisfy Condition 1 with pi and qd we require
that paii > n− dqd and n− dqd < qd.

When k is larger than paii , we rely on the fact that k is larger than n − dqd
to justify that the binomial coefficient

(
n
k

)
is divisible by qd using Lucas’ Theorem

unless if k is a multiple of qd. However, if n− dqd were larger than qd, when writing
n in base qd the inequality paii > n− dqd would not hold.

Lemma 7.1. If n ≥ 30 and d < 5, then n− dqd < qd.

13



Figure 4: Decrease of n− dpd for n = 330.

Proof. By Lemma 4.2, if n ≥ 25, 5n/6d < qd < n/d. Therefore, n/6 > n − dqd.
Now we need to show that qd > n − dqd. It follows that n < qd + dqd and thus
n < qd(1 + d). Using Lemma 4.2,

n <
5n(d+ 1)

6d
< qd(1 + d).

Therefore, 6d < 5d+ 5 and we get that d < 5.

Lemma 7.2. If n ≥ 2,010,882 and d < 16,597, then n− dqd < qd.

The proof is the same one as the one for Lemma 7.1, except that by Lemma 4.3,
the initial inequality is 16,597n/16,598d < qd < n/d.

Corollary 7.3. The integer bd/2c qd is the largest multiple of qd smaller than or
equal to n/2.

Proof. We apply the definition of qd to obtain that n ≥ dqd. Assume, towards a
contradiction, that n > qd(d+1). By Lemmas 7.1 and 7.2, n−dqd < qd and therefore
n < qd(d+ 1). This contradicts the inequality n > qd(d+ 1).

7.1 The 3-variation of Condition 1

In Section 5 we proved that many integers that satisfy the inequalities

n− q > paii > n− 2q2

also satisfy Condition 1 with pi and q2. Although this does not fully answer the
main question of this essay, the proofs explained in Section 5 lead to the results
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of this section, which we consider to be relevant. Thus, in this section we prove
some cases in which an integer n satisfies the 3-variation of Condition 1 (as stated
in Definition 1.2 in the Introduction).

Theorem 7.4. If an even integer n satisfies the inequality n − q > paii > n − 2q2
and pi 6= 2, then n satisfies the 3-variation of Condition 1 with pi, q2 and any prime
that divides

(
n
n/2

)
.

Proof. In Section 5.2 we show that if n satisfies the inequality n− q > paii > n− 2q2
and pi is not 2, the only binomial coefficient we could not prove that was divisible
by either pi or q2 is the central binomial coefficient. Thus, for such n to satisfy the
3-variation of Condition 1 it suffices to add an extra prime that divides the central
binomial coefficient.

Regarding the two highest prime powers of n

For any n, let q be the largest prime smaller than n, let pj be the prime factor of n
such that p

aj
j is the largest prime power of n, and let pr be the prime factor of n such

that parr is the second largest prime power divisor of n. We then claim the following:

Proposition 7.5. If p
aj
j p

ar
r > n/6, then n satisfies the 3-variation of Condition 1

with pj, pr and q.

Proof. By Lucas’ Theorem, for any k such that 1 ≤ k ≤ p
aj
j , the binomial coefficient(

n
k

)
is divisible by pj. For the same reason, by Lucas’ Theorem, for any k such that

n−q < k ≤ n/2 the binomial coefficient
(
n
k

)
is divisible by pj. Then we need a prime

that divides at least the binomial coefficients
(
n
k

)
with p

aj
j ≤ k ≤ n− q such that k

is a multiple of p
aj
j . Now take pr as the third prime such that n might satisfy the

3-variation of Condition 1 with pj, q and pr. For the same reasoning, in this interval
we only consider the k that are multiples of parr . The only k such that the binomial
coefficient

(
n
k

)
is not divisible by either pj of pr are those k that are multiples of both

p
aj
j and parr . The least k that is multiple of both prime powers is p

aj
j p

ar
r . By Lemma

4.2 we know that n− q < n/6. Therefore, if p
aj
j p

ar
r > n/6, this integer is larger than

n− q and hence it is not part of the interval that we are considering. Thus, all the
k lying in the interval p

aj
j ≤ k ≤ n− q are such that the binomial coefficient

(
n
k

)
is

divisible by either pj or pr.

Moreover, using the bounds described in Lemma 4.2, we use the primes pj, q
and qd for n to satisfy the 3-variation of Condition 1.

Proposition 7.6. Let qd be the largest prime smaller than n/d. If qd > n/6, then
n satisfies Condition 1 with pj, q and qd.

Proof. The prime q fails to divide
(
n
k

)
only if 1 ≤ k ≤ n − q. Similarly, by Lucas’

Theorem, the prime qd fails to divide
(
n
k

)
only if cqd ≤ k ≤ cqd+(n−dqd), where cqd

refers to any positive multiple of qd. This is because n− dqd is the last digit of the
base qd representation of n. But because by assumption qd > n − pj, the intervals
[1, n− q] and [cqd, cqd + (n− dqd)] are disjoint.
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8 Bounds on the number of primes needed to

satisfy the N -variation of Condition 1

The proofs obtained for the 3-variation of Condition 1 and the inequalities for n−dqd
in Section 7 led us to consider the N -variation of Condition 1, because this is also
relevant to the main question of the essay. For each positive integer n, we are
interested in the minimum number N of primes such that n satisfies the N -variation
of Condition 1. In this section we provide four upper bounds for N . Because in all
four bounds N is a function of n, the suitability of each bound depends on n; some
bounds may be better for certain values of n.

The proofs of the 3-variation of Condition 1 led my investigations towards finding
upper bounds on the minimum number N of primes needed so that we can prove
that all positive integers satisfy the N -variation of Condition 1.

8.1 First upper bound with prime factors of n

Claim 8.1. If n has m different prime factors, then these prime factors satisfy the
m-variation of Condition 1.

Proof. The proof is similar to the one described when n is a product of two prime
powers. The smallest integer divisible by all the m prime powers of n is n. The base
p representation of all k < n has less zeroes than the base p representation of n for
at least one prime factor p of n. Using Lucas’ Theorem, Claim 8.1 is proven.

8.2 Second upper bound with d

Proposition 8.2. Let qd be the largest prime smaller than n/d and let paii be any
prime power divisor of n such that paii > n − dqd. If paii > qd + n − dqd, then n
satisfies the N-variation of Condition 1 with N = 2 + bd/2c.

For the subsequent proofs we use the following definition:

Definition 8.3. Let cqd be any multiple of qd and let β be n − dqd. We call the
interval [cqd, cqd + β] a dangerous interval.

Note that for every time that paii falls into a dangerous interval we need to add
an extra prime.

Proof. By Lucas’ Theorem all the binomial coefficients
(
n
k

)
are divisible by qd except

if k lies in a dangerous interval. In these dangerous intervals we only consider the
integers that are multiples of paii because if k is not a multiple of paii , then by Lucas’
Theorem the binomial coefficient

(
n
k

)
is divisible by pi. Because paii > β we know

that in any dangerous interval there is at most one multiple of paii . This means
that the worst case is the one in which there is a multiple of paii in every dangerous
interval until c ≤ bd/2c. Thus we need at most one extra prime each time that there
is a multiple of paii in a dangerous interval.

Claim 8.4. If d < 5 and paii > qd + β, then n satisfies Condition 1 with qd and pi.
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Proof. If d < 5, then bd/2c equals either 1 or 2. If it equals one, then by assumption
paii > qd + β, which means that no multiple of paii falls in any dangerous interval
until n/2. If d equals 2, then we need to check that 2paii > 2qd +β. This means that
we want to see that the next multiple of paii does not fall into the second dangerous
interval. The minimum value of paii such that our assumption paii > qd + β holds is
qd + β + 1. The next multiple of qd + β + 1 is 2qd + 2β + 2. This last expression is
greater than 2qd + β, which means that 2paii does not fall into the second dangerous
interval.

8.3 Third upper bound

In this subsection we consider the generalization of the cases that have been discussed
so far. Let d be a natural number and let qd be the largest prime number smaller or
equal to n/d. Let β denote n− dqd, let paii be any prime power divisor of n, and let
γ = paii − cqd. In Sections 8.3 and 8.4 we do not consider the cases in which qd = pi
because the proofs hold by taking any other prime factor of n that is not pi.

Theorem 8.5. For all c ≥ 0, n satisfies the N-variation of Condition 1 with

N = 2 +

⌊
kγqd − (c− 1)

γqd

⌋
β,

where k =

⌊
d

2qdγ

⌋
.

Proof. We first consider the case in which paii = qd + γ and γ ≤ β. This means
that paii falls in the first dangerous interval. Any subsequent multiple of paii is of the
form rpaii = rqd + rγ. Note that we only need to analyze rγ because this is what
determines if paii falls in a dangerous interval.

Lemma 8.6. The prime power divisor paii falls into a dangerous interval if and only
if rγ (mod qd) ≤ β.

The proof of Lemma 8.6 comes from the definition of a dangerous interval (see
Definition 8.3). Now consider all the possible values of rγ modulo qd from γ until
γqd. Note the following:

Remark 8.7. The numbers γ and qd are always coprime.

For the proof of the remark it suffices to see that qd is a prime number. This
means that all the numbers from 1 to qd − 1 appear exactly once in the interval
[γ, γqd). Therefore, by Lemma 8.6 the number of integers that fall into a dangerous
interval are those such that rγ (mod qd) ≤ β. By Remark 8.7 we know there are
only β such integers in the interval [γ, γqd). Thus, if γqd > d/2, we only need 2 + β
primes. We add 2 to β because we also need to count qd and pi. Note that this is
an upper bound and therefore in some cases several of the primes that we use for
the dangerous intervals are repeated.

Now we consider the general case in which paii = cqd + γ. We need to count the
multiples of γqd from cqd until kγqd (k has the same definition as in Theorem 7.1).
This gives us the bound stated in Theorem 8.5.
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Note that, in Theorem 8.5, γ cannot be 0 because otherwise by definition pi
would be equal to qd. This is a case that we are not considering (see the beginning
of Section 8.3).

8.4 Fourth upper bound with Diophantine equations

We consider the Diophantine equation paii k1−qdα = δ, where 0 ≤ δ ≤ β. Let x = k1
and let y = α. The general solutions of these Diophantine equation depending on
the particular solutions x1 and y1 are well-known:

x = x1 − rqd
y = y1 + rpaii

Let ŷ(δ) denote the largest y ≤ bd/2c depending on δ. Note that for all y1(δ) we
can add or subtract a certain number of paii until we reach ŷ(δ).

Theorem 8.8. All integers n satisfy the N-variation of Condition 1 with

N = 2 +

β∑
δ=0

⌊
ŷ(δ)

paii

⌋
≤ 2 + (β + 1)

⌊
d

2paii

⌋
.

Proof. Note that the solutions of the Diophantine equation correspond to all the
cases in which a multiple of paii falls in some dangerous interval. It is known that a
Diophantine equation ax+by = c has infinitely many solutions if gcd(a, b) divides c.
Therefore, for all δ such that 0 ≤ δ ≤ β there exists a particular solution y1(δ) for
y in Equation 6 because gcd(paii , qd) = 1 (recall that we do not consider the case
in which pi = qd). Thus, for each ŷ(δ) we count the number of multiples of paii in
the interval [1, ŷ(δ)]. This is the number of times that paii falls into a dangerous
interval and hence we need to add an extra prime. We also add 2 to count pd and pi.
Moreover, note that by definition ŷ(δ) ≤ bd/2c. This gives us the expression stated
in Theorem 8.8.

9 Computational results

In order to obtain more information about which primes make n satisfy Condition 1
we wrote some C++ programs. The results are presented in this section.

9.1 When we fix a prime

In the original article of Shareshian and Woodroofe [29], the authors computed the
percentage of integers below 1,000,000 that satisfy Condition 1 if p1 is fixed to be 2,
and they found a percentage of 86.7%. We compute the percentage of integers until
10,000 that satisfy Condition 1 fixing one prime to be not only 2 but also 3, 5,
7 and 11. Table 2 shows the number of integers below 10,000 that do not satisfy
Condition 1 fixing one prime to be 2, 3, 5, 7 and 11 respectively. It also shows the
percentage of integers satisfying Condition 1 fixing each prime. Figure 5 shows the
percentage of integers until 10,000 that satisfy Condition 1 depending on the fixed
prime.
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Fixed prime 2 3 5 7 11
Number of integers not satisfying 1 1144 1633 2626 3259 4180
Percentage of integers satisfying 1 88.56% 83.67% 73.74% 67.41% 58.20%

Table 2: Number of integers that do not satisfy Condition 1 and percentage of
integers that do satisfy Condition 1 fixing one prime until 10,000.

Figure 5: Percentage of integers until 10,000 that satisfy Condition 1 fixing one
prime to be 2, 3, 5, 7 and 11 respectively.

9.2 How many pairs of primes satisfy Condition 1

Given a positive integer n, multiple pairs of primes p1 and p2 can satisfy Condi-
tion 1. We have found computationally all the possible pairs of primes that satisfy
Condition 1 with a given n ≤ 3,000. This findings helped us conjecture and then
prove Theorem 3.4. Figure 6 shows the data for n up to 3,000. We note four main
tendencies. The one with the greatest slope corresponds to the one formed with
prime numbers and prime powers. This is explained by Proposition 3.1. Because
only one prime is needed to satisfy the 1-variation of Condition 1 if n is a prime
power, the other prime can be any prime smaller than n. Therefore, this first ten-
dency follows the function f(n) = n/ log n disregarding the prime powers [16]. The
second greatest slope is formed with even numbers that satisfy Condition 1 with one
prime being 2. The third one is formed by numbers satisfying Condition 1 with one
of the primes being 3 and the following one with numbers that satisfy Condition 1
with one prime being 5.

In order to fit a function for each curve, we approximated the function n/ log n
for each branch using Matlab, and we obtained the following functions:
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Figure 6: Number of pairs of primes that satisfy Condition 1 depending on the
integer n until 3,000.

First branch:
0.97n0.96

(log n)0.75
Second branch:

0.80n0.96

(log n)0.84

Third branch:
3.30n1.14

(log n)2.27
Fourth branch:

35.48n1.47

(log n)4.81

Figure 7 shows a plot of each separate branch with its corresponding curve.

10 Multinomials

We also consider a generalization of Condition 1 to multinomials. We investigate
the following condition that some integer n might satisfy:

Condition 3. For a given fixed integer m there exist primes p1 and p2 such that
whenever k1 + · · · + km = n for 1 ≤ ki ≤ n− 1,

(
n

k1,k2,...,km

)
is divisible by either p1

or p2.

A very natural question follows:

Question 10.1. Does Condition 3 hold for all positive integers n?

Here we show that Condition 1 implies Condition 3. We claim the following:

Proposition 10.2. If n satisfies Condition 1 with p1 and p2, then n also satisfies
Condition 3 with these two primes and any m ≤ n.
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Figure 7: The four branches of Figure 6 separated and fitted with a curve.

Proof. We assume that p1 and p2 satisfy Condition 1 for a given n. We then take
the multinomial (

n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!

with the same n and any m ≤ n. We see that we can decompose the multinomial
into a product of m binomials:

n!

k1!k2! · · · km!
=
n(n− 1) · · · (n− k1 + 1)

k1!
.

(n− k1)(n− k1 − 1) · · · (n− k1 − k2 + 1)

k2!
· · · (km−1 + km)(km−1 + km − 1) · · · 1

(km−1!km!

=

(
n

k1

)(
n− k1 − 1

k2

)
· · ·
(
km−1 + km

km

)
.

Because by assumption
(
m
k1

)
is divisible by either p1 or p2, the previous multino-

mial coefficient is also divisible by at least one of them. This decomposition can be
used for any m and the first binomial coefficient can be

(
n
ki

)
, ki being any of the k

in the denominator.

Therefore, if Condition 1 is proven for binomial coefficients, then it automatically
holds for multinomial coefficients.
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11 Conclusions

In this work we have obtained results that significantly contribute to the unsolved
conjecture that motivated our research (see Condition 1 in the Introduction), which
was proposed in a recent article by Shareshian and Woodroofe [29]. We have found
many instances in which the conjecture holds, namely a positive integer n satisfies
Condition 1 at least in the following cases:

• When n is a prime power.

• When n is a prime power plus one.

• When n is a product of two prime powers.

• When n satisfies the inequality n− q < paii , where q denotes the largest prime
smaller than n and paii is any prime power factor of n.

• When n satisfies a similar inequality regarding the largest prime q2 smaller
than n/2.

Using these ideas, we have also found some cases in which if 2n satisfies Con-
dition 1 then so does n, and we have used prime gap conjectures by Cramér, Op-
permann and Riemann to prove that every integer n has infinitely many multiples
that satisfy Condition 1. Moreover, we have considered variations of Condition 1
involving more than two primes and we have provided four different upper bounds
on the minimum number of primes N needed in order to prove that all positive
integers satisfy our N -variation.

We have written several C++ programs which have allowed us to observe what
percentage of integers satisfy Condition 1 if we fix one prime, and also to obtain all
pairs of primes that make a given n satisfy Condition 1. Finally, we have generalized
Condition 1 to multinomials and have proven that if Condition 1 holds for binomials,
then it also holds for multinomials.

After having obtained all these research results, we have analyzed how much we
have contributed to the open problem addressed in this work. Up to 1,000,000, there
are less than 50 numbers that do not fit into any of the cases that we have solved.
We consider this to be a very substantial outcome. Moreover, our proofs concerning
prime gap conjectures potentially have stronger implications, as we believe that
we are very close to proving that all integers larger than a fixed constant satisfy
Condition 1.

Also, our inequalities n − dqd < paii for various values of d, where qd denotes
the largest prime smaller than n/d and paii is the largest prime power divisor of n,
can also lead to better results, and we are convinced that further research in this
direction would solve even more cases.

In conclusion, our proofs substantially contribute to a possible solution to the
open problem proposed in [29], which has been the main objective of this essay, and
we believe that we found ideas that could be studied in greater detail and lead to
sharper results.
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12 Appendix

12.1 Sequences of integers that do not satisfy the
inequality for n − dpd

In Section 7 we mentioned that the set of integers that do not satisfy the inequality
for n− dpd becomes smaller when d increases. In this appendix we display the first
terms of the sequence of integers that do not satisfy the inequality n − dpd < paii
when d equals 1, 2, 3, 4 and 5. The On-Line Encyclopedia of Integer Sequences has
published our sequence in the cases when d equals 1 and when d equals 2. References
are omitted in this anonymous versions of the essay.

When d = 1: 126, 210, 330, 630, 1144, 1360, 2520, 2574, 2992, 3432, 3960, 4199,
4620, 5544, 5610, 5775, 5980, 6006, 6930, 7280, 8008, 8415, 9576, 10005, 10032,
12870, 12880, 13090, 14280, 14586, 15708, 15725, 16182, 17290, 18480, 18837, 19635,
19656, 20475, 20592, 22610, 24310, 25296, 25300, 25520, 25840, 27170, 27720, 27846,
28272, 28275, 29716, 30628, 31416, 31450, 31464, 31465, 32292, 34086, 34100, 34580,
35568, 35650, 35670, 35728, 36036, 36432, 37944, 37950.

When d = 2: 3432, 5980, 12870, 12880, 13090, 14280, 14586, 20475, 28272,
28275, 31416, 31450, 34580, 35650, 39270, 45045, 45220, 72072, 76076, 96135, 97812,
106080, 106590, 120120, 121992, 125580, 132804, 139230, 173420, 181350, 185640,
191400, 195624, 202275, 203112, 215050, 216315, 222768, 232254, 240240, 266475,
271320, 291720, 293930, 336490, 338086, 350064, 351120, 358150, 371280, 388455,
408595, 421600, 430236, 447051, 447304, 471240, 480624.

When d = 3: 3432, 31416, 34580, 35650, 39270, 96135, 121992, 125580, 139230,
215050, 222768, 291720, 358150, 388455, 471240, 513590, 516120, 542640, 569296,
638001, 720720, 813960, 875160, 891480, 969969, 1046175, 1113840, 1153680, 1227600,
1343160, 1448655, 1557192, 1575860, 1745424, 1908816.

12.2 C++ code for finding all the possible pairs

Here we provide the C++ code that we used to find all the possible pairs of primes
that satisfy Condition 1 for each integer. This code has been used to plot Figure 6.
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The code for the data on how many integers satisfy Condition 1 if we fix one
prime is quite similar and is therefore not included.

12.3 Webpage about this problem

As explained in the Introduction, we have created a webpage in which all the con-
cepts and results of this work are explained. From this website it is possible to
download the C++ codes that we have used. The website, entitled Number Theory
and Group Theory, also includes other concepts and programs regarding number
theory and group theory. We wanted all these C++ codes to stay available to ev-
eryone interested, because they are potentially useful mathematical tools for anyone
who wishes to continue investigating this problem or any related problems. The
URL of the website is https://numbertheoryandgrouptheory.yolasite.com/.
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Part II

p-Adic Series Containing the

Factorial Function

Is it true that the sum of the factorial series
∑

n! is a p-adic irrational?
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1 Introduction

The p-adic numbers (where p denotes a prime) were introduced by Kurt Hensel in
1897 and they are a fundamental part of number theory [26]. For instance, the
famous proof of Fermat’s Last Theorem used p-adic numbers. Apart from number
theory, p-adic numbers also appear in algebraic geometry, representation theory,
algebraic dynamics, cryptography, and many other fields of mathematics. They
have also found applications in physics (including p-adic quantum mechanics [9]),
and researchers believe that in the future many other disciplines will benefit from
the properties of p-adic numbers. This work focuses on p-adic analysis, which is a
quite recent technique in mathematics. The applications of p-adic analysis are wide
and have turned out to be a very powerful tool.

The p-adic number system for a given prime p extends the integer numbers [12].
Given a natural number n, if we choose a fixed prime p then we can express n in
the form

n =
k∑
i=0

aip
i, (1)

where each ai is a natural number between 0 and p− 1. Then we say that
∑k

i=0 aip
i

is the p-adic expansion of n. In traditional arithmetic, if n is an integer then this
can be understood as the expression of n in base p. The system of p-adic numbers is
constructed by allowing expressions such as (1) to be infinite sums, that is, formal
series on powers of p. Infinite p-adic expansions play a role similar to infinite decimal
expansions of real numbers. Furthermore, we can also talk about rationality of p-adic
expansions: as in the case of real numbers, a p-adic expansion represents a rational
number if and only if it is periodic, as explained in Section 4.2.

It is important to distinguish between the set Zp of p-adic integers and the set Qp

of p-adic numbers because they are defined differently: Zp is a ring whereas Qp is a
field and contains the field Q of rational numbers. Both rings and fields are algebraic
structures which extend the concept of a group [27]. The following diagram relates
the sets of numbers Z, Zp, Q, Qp and R:
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The difference between a ring and a group is that a ring is defined as a set of
elements with two operations (addition and multiplication) instead of just one. In
the case of p-adic integers, we can add, subtract or multiply. Moreover, the difference
between a field and a ring is that a field contains inverses with respect to the second
operation of all non-zero elements. Therefore, in Qp we can add, subtract, multiply
or divide. In the ring Zp it is also possible to divide by non-zero integers, except for
powers of p.

A feature of p-adic integers is a concept of distance, which is formally similar
but very different from the distance between real numbers. In the real numbers, we
say that 2 and 3 are closer to each other than 2 and 10 because |3 − 2| < |10 − 2|.
However, this is not how metric is defined in p-adic analysis. In Zp we say that
two numbers x and y are close if x − y is divisible by a high power of p. The
precise definition, which involves the concept of p-adic absolute value, is detailed in
Section 3.2. This metric extends to Qp and has unique characteristics when it comes
to convergence of p-adic series.

In this work we focus on the series
∑∞

n=0 n!. This series converges in Zp for all p,
but the question whether its value is rational or irrational is an open problem. It is
believed to be irrational for all p, yet there is no known proof [28].

One of our main results is that, if we replace n! by a suitable p-adic approximation
(namely, the highest power of p dividing n!) then the resulting series converges to
an irrational number for all p. The idea of replacing n! by a p-adic approximation
which is computable in a non-recursive way is reminiscent to Stirling’s formula [23]:

n! ≈
(n
e

)n√
2πn.

The difficulty about computing n! for large values of n is that it has to be done re-
cursively, and this makes it a very slow process. However, Stirling’s formula provides
a direct way to estimate n!.

In this work we also study the convergence of series of the form
∑∞

n=0 n
k(n+m)!

for arbitrary values of k and m. We conjecture that such a series only converges to
an integer for k = 2, m = 1, and for k = 5, m = 1. These two cases are mentioned
without further comments in [28], were the following values are given:∑∞

n=0 n
2(n+ 1)! = 2;

∑∞
n=0 n

5(n+ 1)! = 26.

We describe a method to compute the value of each series
∑∞

n=0 n
k(n + m)! in

terms of α =
∑∞

n=1 n!, extending results from [9], and obtain that

∞∑
n=0

nk(n+m)! = xα + y

where x and y are integers depending on k and m. We study the coefficient x and
observe that, for m = 1 and m = −1, the values of x are cyclic for consecutive
values of k if they are reduced modulo a power of 2, or a power of 3, or a power of
6, and only in these cases. We then use this pattern to infer some cases in which
the series

∑∞
n=0 n

k(n+m)! cannot converge to an integer since x 6= 0.
In Section 2 we collect some properties of p-adic integers and explain how to

compute p-adic expansions manually. We then explain a recursive way to do so,
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using Hensel’s Lemma, which is introduced with Newton’s Method due to their
similarities. In Section 3 we define the p-adic valuation and relate it to convergence
of series of p-adic numbers. In Section 4 we study the rationality of p-adic series,
provide a p-adic approximation of

∑
n! and prove its irrationality. In Section 5 we

discuss the irrationality of
∑
n! and then in Section 6 we explain how to compute

the convergence of the series of the form
∑
nk(n + m)! and prove a main result in

which
∑
nk(n+ 1)! cannot converge to an integer. Finally, in Section 7 we analyze

these convergences modulo powers of primes.

2 Calculating with p-adic numbers

2.1 p-Adic expansions of roots of polynomials

In this section we explain how to compute p-adic expansions of roots of polynomials
by hand. The first step in computing a p-adic expansion, which is of the form
a0 + a1p + a2p

2 + · · · with 0 ≤ ai < p for all i, is to find a0. In order to do so for
a root of a polynomial P (x), it is necessary to find a value of x for which P (x) is
congruent to 0 modulo p. The claim that a number a is congruent to b modulo n
means that a and b yield the same remainder when we divide them by n. This is
denoted by a ≡ b (mod n).

Therefore, in order to start a p-adic expansion of a root of a polynomial P (x),
we need to assure that there exists at least one x such that P (x) ≡ 0 (mod p). We
first observe the following fact about linear equations:

Claim 2.1. For all a and b with a 6≡ 0 (mod p) there exists a unique x such that
ax+ b ≡ 0 (mod p).

Proof. Take the equation

ax+ b ≡ 0 (mod p),

which can be rewritten as

ax− py = b.

This last expression is indeed a Diophantine equation since it is linear and there
are two variables [11]. By assumption, gcd(a, p) = 1. The necessary condition for
a linear Diophantine equation to have infinite solutions is that b be a multiple of
gcd(a, p). Clearly, b is a multiple of 1, and hence this equation has infinite solutions.
Once we find a base solution x0 and y0 (both smaller than p), we can express the
general solution [11] as

x = x0 +
kp

gcd(a, p)
; y = y0 −

ka

gcd(a, p)
.

If we add kp to the base solution x0, then x becomes larger than p except when
k = 0. Since x has to be smaller than p, it follows that the solution is x0 and it is
unique.
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We now explain a method to compute p-adic expansions of roots of any polyno-
mial P (x), but we are going to give first an example using the quadratic equation
x2 = 5. Note that in this case it is not true that we can find x0 for every p. In
the example x2 = 5, we cannot find any root in Zp for p = 7, because by inspection
there is no x0 such that x20 ≡ 5 (mod 7). However, x0 does exist if p = 11, and the
two solutions are x0 = 4 and x0 = 7. Note that 7 is the opposite of 4 modulo 11
with respect to the sum, since 7 + 4 = 11. Then we start working in Z11 and take
x0 to be 4. We denote a solution of x2 = 5 by α. Thus α is of the following form
with p = 11:

α = a0 + a1p+ a2p
2 + a3p

3 + · · · .

We want α2 to be 5 and hence

5 = α2 = (a0 + a1p+ a2p
2 + a3p

3 + · · · )(a0 + a1p+ a2p
2 + a3p

3 + · · · ).

If we multiply we obtain the following expression:

α2 = a20 + (2a0a1)p+ (2a0a2 + a21)p
2 + (2a0a3)p

3 + (2a0a4 + 2a1a3 + a22)p
4 + · · · .

All parentheses need to be congruent to 0 modulo 11. Also, for each occurrence of
11 in one parenthesis there is one carry (similarly as when we add in base 10). We
already know that a0 equals 4 and therefore

a20 = 16 = 5 + 11.

We carry one to the next parenthesis, which needs to be congruent to 0 modulo 11:

2a0a1 + 1 ≡ 0 (mod 11).

By substituting a0 we find a1:

8a1 + 1 ≡ 0 (mod 11); 8a1 ≡ −1 ≡ 10 (mod 11).

By inspection we see that a1 equals 4. If we keep repeating this process we find the
first terms of the 11-adic expansion of α, which is

α = 4 + 4 · 11 + 10 · 112 + 4 · 113 + 0 · 114 + · · · .

With this method the p-adic expansion of a root of any polynomial can be found,
provided that the first digit a0 exists.

2.2 p-Adic inverses

We proceed to explain how a p-adic inverse with respect to multiplication can be
found. This is a number of the form 1/n evaluated in Zp, assuming that p does not
divide n. Take the example of 1/7 evaluated in Z11. This can be rewritten as

7x ≡ 1 (mod 11).

32



Here we substitute x with the 11-adic expansion

7(a0 + a111 + a2112 + a3113 + · · · ) = 1.

Therefore
7a0 + 7a111 + 7a2112 + 7a3113 + · · · = 1,

where 7a0 ≡ 1 (mod 11). We see by inspection that a0 equals 8. Hence

7a0 = 7 · 8 = 56 = 1 + 5 · 11.

If we put this back into the 11-adic expansion we obtain

(1 + 5 · 11) + 7a111 + 7a2112 + · · · = 1.

As explained in the previous section, 5 is carried to the next parenthesis:

1 + (5 + 7a1)11 + · · · = 1.

Now we need to solve
5 + 7a1 ≡ 0 (mod 11).

This last expression is equivalent to

7a1 ≡ −5 ≡ 6 (mod 11).

Since we know that the solution of 7a ≡ 1 modulo 11 is a = 8, we can substitute

a1 = 8 · 6 = 48 ≡ 4 (mod 11).

If we keep using this method we obtain that

x = 8 + 4 · 11 + 9 · 112 + · · · .

2.3 Newton’s Method

In the previous two sections we described how to find p-adic expansions of roots
of polynomials and inverses of nonzero integers. However, the process may take
a long time, especially if the degree of the polynomial is high. There is a much
more effective method to find p-adic expansions of roots of polynomials, namely
Hensel’s Lemma. The procedure is very similar to Newton’s Method. Therefore in
this section we first introduce Newton’s Method [24], which is used to find the roots
of a given polynomial f(x) over R or C. That is, we want to find x so that f(x) = 0.
We first need to determine an x0 which is close to the actual root x. The main idea
behind the method is that if we take the tangent line at x0 and we determine when
it crosses the x-axis we obtain a value x1 which should be much closer to the root
that we are trying to find [32]. The following picture illustrates the method:
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Figure 1: Illustration of Newton’s Method using tangent lines.

In summary, Newton’s Method to find a root of a polynomial f(x) uses the
recursion

xn+1 = xn −
f(xn)

f ′(xn)
.

2.4 Hensel’s Lemma

Similarly to Newton’s Method, in p-adic analysis the way to find the roots of a
polynomial is using Hensel’s Lemma [6]. Let f(x) be any polynomial and suppose
that we want to find its roots in Zp for some prime p. Hensel’s Lemma states the
following [6]:

Lemma 2.2. (Hensel) If f(x) ∈ Zp[x] and a ∈ Zp satisfies f(a) ≡ 0 (mod p) and
f ′(a) 6≡ 0 (mod p), then there is a unique α ∈ Zp such that f(α) = 0 and α = a
(mod p).

The main idea behind Hensel’s Lemma is to find a solution modulo p and then lift
it modulo higher powers of p. Hensel’s Lemma assures that if there exists a solution
modulo p then there exists a p-adic expansion for the root of the polynomial and
it is unique. The method is the following. First we find x1 such that f(x1) ≡ 0
(mod p). Then we look for x2; we know that it is of the form

x2 = x1 + pt,

where we need to determine t. We want that x2 ≡ x1 modulo p. By the Taylor
polynomial expansion [12] we know that

f(x2) = f(x1 + pt) ≈ f(x1) + ptf ′(x1) + · · · .

We do not need to write the whole expansion because

f(x1) + ptf ′(x1) + · · · ≡ f(x1) + ptf ′(x1) (mod p2).

Since we know that f(x1) ≡ 0 (mod p), we can divide the previous expression by p:

f(x1)

p
+ tf ′(x1) ≡ 0 (mod p).
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We can find t from this expression and then we can find x2 since it is defined as
x1 + pt. These steps can be done recursively similarly as in Newton’s Method. In
general, we use these two expressions [12]:

f(xn−1)

pn−1
+ tf ′(xn−1) ≡ 0 (mod p); xn = xn−1 + tpn−1 (mod pn).

Note that, similarly to Newton’s Method, the necessary condition for Hensel’s
Lemma to work is that f ′(x) 6= 0 (mod p). Also, the coefficients of the polyno-
mials need to be reduced modulo p. We can take as an example the polynomial
x2 = 5 in Z11 studied in Section 2.1. We know that x1 equals 4 and hence

x2 = x1 + pt = 4 + 11t (mod 112).

We find t by using the previous recursive expression

11

11
+ 8t ≡ 0 (mod 11).

We see that t equals 4. Thus we know that

x2 = 4 + 11t = 4 + 11 · 4 = 48.

Using this method we obtain the successive ai, which are 4, 4, 10, 4, 0, . . . . Note that
these ai that we obtained using Hensel’s Lemma for the polynomial x2 = 5 are the
same values that we obtained in Section 2.1 by computing them manually for the
same polynomial.

3 p-Adic convergence

3.1 p-Adic norm

In this section we provide necessary definitions for understanding convergence [10]
of sequences and series in Zp.

Definition 3.1. Given a prime number p and a positive integer n, the p-adic order
or p-adic valuation of n is the highest exponent α ∈ N such that pα divides n.

The p-adic valuation of α is denoted by α = vp(n). For instance, v2(24) = 3
since 23 = 8 | 24 and 24 = 16 - 24. The p-adic valuation satisfies the following
properties [10]:

1. vp(a · b) = vp(a) + vp(b).

2. vp(a/b) = vp(a)− vp(b).

With the concept of p-adic valuation we can then define the p-adic absolute
value, also called p-adic norm [17].

Definition 3.2. |x|p = p−vp(x) if x 6= 0. If x = 0, then |x|p = 0.
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The p-adic absolute value satisfies the following properties:

1. |a|p ≥ 0.

2. |ab|p = |a|p|b|p.

3. | − a|p = |a|p.

4. |a+ b|p ≤ |a|p + |b|p.

5. |a+ b|p ≤ max(|a|p, |b|p).

This last property is a quite famous one because it means that the p-adic absolute
value is non-Archimedean [17]. Therefore, using the previous example we can see
that |24|2 = 2−3 = 1/23.

Norm of a factorial

Because this work examines the p-adic factorial function, it is natural to ask which
is the p-adic norm of n!. That is, given p, we want to find the largest α such that
pα | n!. This problem was solved by Legendre:

Theorem 3.3. (Legendre) If vp(n) denotes the largest power α of p such that pα

divides n, then

vp(n!) =
∑
j≥1

⌊ n
pj

⌋
.

Moreover, Legendre showed that vp(n!) also equals n−Sp(n)

p−1 , where Sp denotes the
sum of the digits of n in base p. Therefore,

|n!|p = 1/p
n−Sp(n)

p−1 .

We also claim the following:

Claim 3.4.
∏

p |n!|p = 1/n!.

Proof. The factorial n! can be written as

n! = 2α1 · 3α2 · · · · · pαk .

Hence the highest power of p that divides n! is αk; that is, |n!|p = p−αk . It follows
that ∏

p

|n!|p =
∏
p

p−αk =
1∏
p p

αk
=

1

n!
,

as claimed.
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3.2 p-Adic series

As explained in the Introduction of this second part of the work, due to the prop-
erties of p-adic numbers the convergence of infinite series in Qp is different than the
converge of infinite series in R. This is due to the following definitions and remarks
from [15]:

Definition 3.5. A Cauchy sequence is a sequence such that its elements become
arbitrarily close to each other as the sequence progresses. That is, for every given
ε > 0 there exists an N such that for all m,n > N we have |am − an| < ε.

Definition 3.6. A metric space is complete if every Cauchy sequence converges.

Theorem 3.7. Qp is complete.

Then we can prove the following very important theorem in p-adic analysis [15]:

Theorem 3.8. A series
∑∞

n=1 xn converges in Qp if and only if limn→∞ xn = 0.

Proof. We define Sn = x1 + x2 + · · · + xn, so Sn − Sn−1 = xn. By definition [10],∑∞
n=1 xn = limn→∞ Sn. We first prove the first part of the implication. If

∑
xn

converges to l ∈ Qp, then limn→∞ Sn = l. Hence,

lim
n→∞

xn = lim
n→∞

Sn − lim
n→∞

Sn−1 = l − l = 0,

and the first part of the implication is proven. Now we prove that the converse is
also true. If limn→∞ xn = 0, then for all pairs of positive integers m > n we have

Sm − Sn = Sm − Sm−1 + Sm−1 − Sm−2 + · · ·+ Sn+1 − Sn = xm + xm−1 + · · ·+ xn+1.

Consequently,
|Sm − Sn|p ≤ max(|xm|p, . . . , |xn+1|p).

Given ε > 0, there exists a sufficiently large N such that |xm|p < ε, . . . , |xn+1|p < ε
if m,n > N , because |xn|p goes to 0. Therefore, according to Definition 3.5, Sn is a
Cauchy sequence and hence converges because Qp is a complete metric space.

Theorem 3.9 is clearly not true in R. The fact that the general term goes to 0
does not imply that the sequence converges. For instance, the general term of the
well-known harmonic series 1 + 1

2
+ 1

3
+ 1

4
+ · · · tends to 0, but the series does

not converge. Therefore, in p-adic analysis it is easier to decide whether a series
converges or not.

4 The series
∑

n!

4.1 Convergence in Zp

After having discussed convergence in general of series in p-adic analysis, we now
turn to the factorial series

∑
n!. We first observe the following:
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Claim 4.1. The series
∑
n! converges in Zp for all primes p.

Proof. Since |n!|p = 1/p
n−sp(n)

p−1 , we have that |n!|p → 0 when n→∞.

To compute the sum of
∑
n! in Zp we can calculate the partial sums of the series∑

n! in Z and then represent the result in base p. Since n! is an integer, computing
its p-adic expansion means representing n! in base p. For instance, imagine we want
to represent 1! + 2! + 3! + 4! in Z3. In R this sum equals 33. This is 1020 in Z3,
because 33 = 1 · 33 + 0 · 32 + 2 · 3 + 0, which is the 3-adic expansion of 33. The first
digits that become permanent are the ones corresponding to the lower powers of p.
Therefore, we are interested in the last digits of the base p representation of

∑
n!.

Figure 2 illustrates the convergence of
∑
n! in Z5. Table 1 provides some digits of

the sum of
∑
n! in Zp with p = 3, 5, 7, 11. Also Z10 is included in the table because

although it is technically not correct to talk about Z10 since 10 is not a prime, we
usually operate in base 10 and hence the process is easier to visualize.

It is important to remark that the question whether
∑
n! is rational or irrational

remains unanswered since this question was posed in [28]. In the following section
we explore the p-adic meaning of rationality.

Figure 2: Example in our C++ code of how the sum of n! converges in Z5.

Table 1: Example of the convergence of
∑
n! in Zp depending on p.
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4.2 Rationality of p-adic expansions

In R we widely use the concepts of rationality and irrationality. It is clear that
all integers are rational, and we say that a real number x is rational if it can be
expressed in the form a/b where a and b 6= 0 are integers. When we write the
decimal expansion of a given number x, we observe that if x is rational then its
decimal expansion is periodic and viceversa. Therefore, periodicity is is a necessary
and sufficient condition for rationality. We claim that the same property holds with
p-adic numbers:

Theorem 4.2. The p-adic expansion of any x ∈ Zp is periodic if and only if x is
rational.

Proof. First we prove one part of the implication: if the p-adic expansion of x is
periodic, then x is a rational number. Suppose that we have a p-adic expansion
a1p + a2p

2 + a3p
3 + · · · . First we consider the expansion to be purely periodic

without a0, and we denote the length of the period by j. Therefore, we can rewrite
the expansion as

p(a1 + a2p+ a3p
2 + · · ·+ ajp

j−1) + pj+1(aj+1 + aj+2p+ aj+3p
2 + · · ·+ a2jp

j−1) + · · · .

Because the expansion is purely periodic and of length j it means that a1 =
aj+1 = a2j+1 = · · · = akj+1, a2 = aj+2 = a2j+2 = · · · = akj+2, etc. Therefore, all
the parentheses of length j are equal. We say that akj+1 + akj+2p+ · · ·+ a(k+1)jp

j−1

equals γ for all values of k. Then we can rewrite the previous expression as

γp+ γpj+1 + γp2j+1 + · · ·+ γpkj+1 + · · · = γ(p+ pj+1 + p2j+1 + · · · pkj+1 + · · · ).

The parenthesis (p+ pj+1 + p2j+1 + · · ·+ pkj+1 + · · · ) is a geometric series, which
means that (applying the formula for the infinite sum of a geometric series) it is
equal to p/(1 − pj). This is clearly rational, and therefore this part of the proof is
complete. If the expansion is not purely periodic, then the proof still holds because
we just subtract the non-periodic part from both sides of the equation: if we subtract
a rational number from p/(1− pj) the result is still rational.

Now we prove that rationality implies periodicity. If a p-adic number is rational,
then it can be written as a/b for some integer a and b. Recall the method for
finding the p-adic inverse of any number of the form 1/b for any non-zero value of b
explained in Section 2.2. Each time we compute a new ai for the p-adic expansion
of the inverse a0 + a1p + a2p

2 + · · · we multiply some number smaller than p by
a fixed integer d such that bd ≡ 1 modulo p. Because this method finds the value
of ai regardless of i and only depends on the value of ai−1, when the value of aj
for some j equals the value of any previous ai the digits start to repeat and thus
the expansion is periodic. This explains the periodicity of the p-adic expansion
of 1/b. In order to generalize this proof, we need to consider any fraction a/b. First
1/b = m + γ(pr + pr+j+1 + pr+2j+1 + · · · + pr+kj+1 + · · · ) because it is a periodic
expansion, where m ∈ Z denotes the possible non-periodic part of 1/b and r is the
exponent of p from which the expansion becomes purely periodic. When we multiply
by a we obtain that a/b = am + aγ(pr + pr+j+1 + pr+2j+1 + · · · + pr+kj+1 + · · · ),
which is also periodic.
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4.3 A p-adic approximation of n!

The motivation for finding a p-adic approximation of n! comes from Stirling’s for-
mula. As explained in the Introduction, it is not fast to compute large factorials
because it has to be done recursively. However, Stirling’s formula uses the function
nn in order the compute the factorial directly. Stirling’s formula tells us that

n! ≈
(n
e

)n√
2πn.

Note that if we rearrange the expression as

n!

nn
≈
(

1

e

)n√
2πn

we observe that the quotient between n
√
n! and n tends to a constant as n grows

large. Therefore, we can say that although both n
√
n! and n tend to infinity, they

do so at the same speed.
Now we want to find a p-adic approximation of n!. Instead of going to infinity,

as explained in Section 4.1, n! goes p-adically to 0 when n grows large. Therefore,
we want to find a function that goes p-adically to 0 with the same speed as n!. We
have the following answer:

Claim 4.3. The function p
n−Sp(n)

p−1 converges to 0 at the same speed as n! in Zp.

Proof. The function in Claim 4.3 comes from Legendre’s Theorem (see Section 3.1).

Since n−Sp(n)

p−1 returns the highest power of p that divides n!, when we represent n! in

Zp it ends with n−Sp(n)

p−1 zeroes. Also, p
n−Sp(n)

p−1 in Zp consists of 1 followed by n−Sp(n)

p−1
zeroes. Therefore, the two functions have the same number of ending zeroes for any
value of n and thus their rates of convergence are the same.

4.4 Irrationality of
∑

p
n−Sp(n)

p−1

In this section we consider the series
∑
p

n−Sp(n)

p−1 and we prove that it converges to an
irrational number in Zp. We discuss this series because, as explained in the previous

section, p
n−Sp(n)

p−1 is p-adically close to n!. We claim the following:

Theorem 4.4. The sum of the series
∑
p

n−Sp(n)

p−1 is irrational in Zp for all p.

Before we go to the proof, it is useful to study the evolution of Sp(n) as n
increases. Figure 3 illustrates the evolution of Sp(n) for p = 3.
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Figure 3: Evolution of the sum of the digits of n in base 3 until n = 71.

With this data we can construct the following table.

Table 2: Evolution of p
n−Sp(n)

p−1 .

For the following claims we need to define a new term:

Definition 4.5. The kth package of n in base p is the set formed by the numbers
Sp(n) with n from kp to (k + 1)p− 1.

Therefore, the cardinality of every package is p. First we note the following:

Claim 4.6. The elements in any package are consecutive.

Proof. Let Sp(n) be the first element of any package. By definition n is a multiple
of p, which means that the representation of n in base p ends with at least one
zero. Let Sp(m) denote any other element in the same package. The last digit
of the base p representation of m cannot be zero, because by definition the next
multiple of p lies in the next package. Therefore, the only difference between the
base p representation of n + i and the base p representation of n + (i + 1), where
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0 ≤ i < p − 1, is that the last digit increases by one, starting with 0 for n and
finishing with p− 1 for n+ (i+ 1). Because Sp(n+ i) denotes the sum of the digits
of the base p representation of n+ i, it is clear that the elements in any package are
consecutive.

Corollary 4.7. The number n−Sp(n)

p−1 is constant for all elements in the same package.

Proof. From Claim 4.6 it is clear that in any package Sp(n) increases by one when
n increases by one. Therefore, n − Sp(n) is constant for all elements in the same

package. The number p− 1 is also constant, which means that n−Sp(n)

p−1 remains the
same for all elements in the same package.

Corollary 4.8. The number p
n−Sp(n)

p−1 finishes with the same number of zeroes for all
the elements in the same package.

Claim 4.9. The number of zeroes of p
n−Sp(n)

p−1 in base p is increasing.

Proof. As explained in Section 4.3, p
n−Sp(n)

p−1 finishes with the same number of zeroes
as n! in base p. Because n! = 1 · 2 · · · · · (n− 1) · n, the number of multiples of p in
n! can only be increasing.

All these claims can be observed in Table 2. For the proof of Theorem 4.4 it
is important to take into account the disposition shown in Figure 4. This diagram

represents the addition by hand of p
n−Sp(n)

p−1 for p = 3 and until n = 20. In Figure 4

it can be observed how the number p
n−Sp(n)

p−1 finishes with the same number of zeroes
for all the elements in the same package, as stated in Corollary 4.8.

Figure 4: Values of p
n−Sp(n)

p−1 for p = 3 until n = 20. Powers of 3 are marked in red.
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Having made all these observations we can now prove Theorem 4.4.

Proof of Theorem 4.4. We focus on what happens when n is a power of p. That
is, n = pα for some value of α ∈ N. We now compare the number of zeroes of

p
(n−1)−Sp(n−1)

p−1 with the number of zeroes of p
n−Sp(n)

p−1 . Because n = pα, the base p
representation of n consists of 1 and α zeroes. Therefore, it is easy to compute the

number of zeroes of p
n−Sp(n)

p−1 because Sp(n) = 1. Also, because n − 1 = pα − 1, the
base p representation of n− 1 consists only of p− 1 digits, and there are α of them.

Therefore, Sp(n − 1) = α(p − 1). Hence, the number of zeroes of p
n−Sp(n)

p−1 is n−1
p−1 ,

whereas the number of zeroes of p
(n−1)−Sp(n−1)

p−1 is n−1−α(p−1)
p−1 = n−1

p−1 −α. So this means

that p
n−Sp(n)

p−1 has α more zeroes than p
(n−1)−Sp(n−1)

p−1 .

Then when we add p
n−Sp(n)

p−1 to
∑n−1

i=0 p
i−Sp(i)

p−1 , between the first digit of p
(n−1)−Sp(n−1)

p−1

and the first digit of p
n−Sp(n)

p−1 there are α − 1 zeroes. When we add p
n−Sp(n)

p−1 to∑n−1
i=0 p

i−Sp(i)

p−1 , we see that after the first digit of the result (which is a 1 that comes

from p
n−Sp(n)

p−1 ) and the following 1 there are α− 2 zeroes. It is α− 2 and not α− 1
because when adding the packages for each package there are p ones that we have to
add together, which means that there is exactly one carry for each package. Then,

the important observation is that when we add p
n−Sp(n)

p−1 to
∑n−1

i=0 p
i−Sp(i)

p−1 , we fix all

the digits that come before because by Claim 4.8 the number of zeroes of p
n−Sp(n)

p−1 is
increasing (also see Figure 4). Therefore there are n−1

p−1 digits that are forever fixed

in the expansion of
∑
p

n−Sp(n)

p−1 , which implies that there are α − 2 zeroes that are

forever fixed in the expansion of
∑
p

n−Sp(n)

p−1 . However, α increases by one for each

power of p, which means that the number of zeroes fixed in
∑
p

n−Sp(n)

p−1 increases
by one each time we encounter a power of p. Therefore, this expansion cannot be

periodic, and by Theorem 4.2 the p-adic expansion of
∑
p

n−Sp(n)

p−1 is irrational, as we
wanted to see.

In order to make this proof more visual, the following diagram represents the
addition for 33−1 = 26 and 33 = 27 in Z3. It can be observed that there is one zero

forever fixed in the sum of
∑

3
n−S3(n)

3−1 , and when we add the term corresponding to
34 = 81 there will be two zeroes forever fixed, and so on.
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Figure 5: Visualization of an example: addition for n = 26 and n = 27 in Z3.

We have written a short article containing the proof of Theorem 4.4 and have
posted it in the arXiv [3].

5 Regarding the irrationality of
∑

n!

The main motivation of this work has been the series
∑
n!, because it is not known

if its sum is rational or not. After proving the irrationality of the p-adic analogous
that we found, we tried to prove the p-adic irrationality of

∑
n! using the same ideas.

However, we did not manage to prove it. Nevertheless, we found two arguments that
could be useful towards a proof. The first one is the following:

Claim 5.1. For any positive value of n,

n! ≥
n−1∑
k=0

k!

Proof. We proceed to prove Claim 5.1 by induction. We assume that k! ≥
∑k−1

i=0 i!
is true and we want to see if it is also true for k + 1. Our base case holds, since

0∑
i=0

i! = 0! = 1 = 1!

Now we apply the induction hypothesis to see that our assumption is true for n+ 1:

(k + 1)! = (k + 1)k! ≥ (k + 1) >
k−1∑
i=0

i! = k
k−1∑
i=0

i! +
k−1∑
i=0

i!

= k(0! + 1! + · · ·+ (k − 1)!) +
k−1∑
i=0

i! ≥ k(k − 1)! +
k−1∑
i=0

i!

= k! +
k−1∑
i=0

i! =
k∑
i=0

i!
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Since the base case holds and we saw that if Claim 5.1 is true for k it is also true
for k + 1, the proof is complete.

We also make a second observation:

Claim 5.2. The number of ending zeros of n! cannot be larger than the number of
digits of

∑n−1
k=0 k!.

Proof. We first observe the following: due to the rapid growth of n!, when we add n!
to
∑n−1

k=0 k!, the number of digits of
∑n

k=0 k! is approximately the same as n!. This
is supported by Claim 5.1. Therefore,

log (
∑n

k=0 k!) ≈ log(n!).

We take the logarithm because it is well-known that the number of digits of x
is roughly log(x). Now we can get an approximation of log(n!) applying Stirling’s
Formula. Recall from the explanation of Section 4.3 that, due to Stirling’s Formula,
n! ≈ nn, although it is clear that nn ≥ n!. Hence, log(n!) ≈ n log(n) and we have
that

log (
∑n

k=0 k!) ≈ n log(n).

Now we evaluate the number of zeroes of (n + 1)! compared to the number of
zeroes of

∑n
k=0 k!. It suffices to analyze the case in which (n+ 1)! has the maximum

number of zeroes, and because we are working in Zp this happens when (n + 1)! is
a power of p. Then we can apply Legendre’s Formula to obtain that Sp(n+ 1) = 1.

Therefore, the number of ending zeroes of (n+ 1)! is (n+1)−1
p−1 = n

p−1 . It is then clear

that n log(n) > n
p−1 , and hence the proof is complete.

6 Convergence of other p-adic series with n!

6.1 First type of series

After having analyzed the series
∑
n!, we saw in [28] the following claim, which is

stated but not proven there:

Claim 6.1.
∑∞

n=0 nn! = −1.

Proof. We do not know if
∑
n! is rational or not, but we can compute the following:

∞∑
n=0

[(n+ 1)!− n!] = 1!− 0! + 2!− 1! + 3!− 2! + · · · = −1.

Because of the alternating sign, all the terms cancel except for −0!, which is equal
to −1. Moreover,

(n+ 1)!− n! = n!(n+ 1− 1) = nn!

and therefore
∞∑
n=0

nn! = −1

as claimed.
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For the subsequent proofs we use the following notation:

Definition 6.2. We denote
∑∞

n=1 n! by α.

The following output of our C++ code illustrates the meaning of p-adic con-
vergence to −1 in Z5. Note that the digit p − 1 (in this case 4 because −1 ≡ 4
modulo 5), keeps appearing in the end more and more as n increases.

Figure 6: Convergence of the series
∑
nn! to −1 in Z5.

We then asked ourselves, given that this is a recursive method, if there is also a
method to compute

∑∞
n=0 n

kn! for higher values of k. The answer is yes, and here
we provide the method. We can compute

∑∞
n=0 n

2n! using the following trick:

∞∑
n=0

(n+ 2)(n+ 1)n! =
∞∑
n=0

(n+ 2)! =
∞∑
n=2

n! = α− 1. (2)
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However, we also have that

∞∑
n=0

(n+ 2)(n+ 1)n! =
∞∑
n=0

(n2 + 3n+ 2)n! =
∞∑
n=0

n2n! + 3
∞∑
n=0

nn! + 2
∞∑
n=0

n! (3)

Then substituting with (2):

∞∑
n=0

n2n! + 3
∞∑
n=0

nn! + 2
∞∑
n=0

n! =
∞∑
n=0

n2n!− 3 + 2(α + 1). (4)

Equating (2) and (3) we obtain

α− 1 =
∞∑
n=0

n2n!− 1 + 2α

and therefore
∞∑
n=0

n2n! = −α.

The same method works when k = 3:

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)n! =
∞∑
n=0

(n+ 3)! =
∞∑
n=3

n! = α− (1! + 2!) = α− 3; (5)

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)n! =
∞∑
n=0

(n3 + 6n2 + 11n+ 6)n! (6)

The last equation is equal to:

∞∑
n=0

n3n!+6
∞∑
n=0

n2n!+11
∞∑
n=0

nn!+6
∞∑
n=0

n! =
∞∑
n=0

n3n!+6(−α)+11 · (−1)+6α (7)

Therefore, from (5) and (7):

∞∑
n=0

n3n! = α + 2.

This is a recursive process and by obtaining all the values of
∑∞

n=0 n
in! for

i ≤ k − 1 we can obtain the value of
∑∞

n=0 n
kn!. Hence we infer the following:

Claim 6.3. If α =
∑∞

n=1 n! is rational, then
∑∞

n=0 n
kn! is also rational for all k.

Proof. As seen from the recursion,
∑∞

n=0 n
kn! = skα+ yk, where the integers sk and

yk depend on k. If α is rational then so is skα + yk.
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Note 6.4. From now on, we shall denote the value of the coefficient of α when we
compute the sum of

∑∞
n=0 n

kn! by sk.

Following the recursivity, we can display as many values of
∑∞

n=0 n
kn! as desired:

∞∑
n=0

nn! = −1 (8)

∞∑
n=0

n2n! = −α (9)

∞∑
n=0

n3n! = α + 2 (10)

∞∑
n=0

n4n! = 2α− 3 (11)

∞∑
n=0

n5n! = −9α− 4. (12)

What is very interesting to observe about these series is the following: if the
coefficient of α is 0, then

∑∞
n=0 n

kn! converges to an integer. We have computed
using C++ the values of sk (the coefficients of α) until very large numbers, and we
have encountered that it only seems to be 0 when k = 1. Table 3 shows the values
of the coefficient of α until k = 15. We observe that the value of the coefficient of α
bounces between positive and negative values, but the absolute value seems to keep
increasing. This provides evidence to conjecture the following:

Conjecture 6.5. The series
∑∞

n=0 n
kn! converges to an integer only when k = 1.

Table 3: Coefficients sk of α until k = 15.
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When we checked if this sequence of integers existed in the On-line Encyclopedia
of Integer Sequences (OEIS) we found out that it exists indeed, and the values of sk
are called complementary Bell numbers or Uppuluri-Carpenter numbers. They are
related to combinatorics and to the function e1−e

t
. In several recent papers [1, 8, 21]

and these numbers are also linked to other features in p-adic analysis.
In the next section we relate the numbers sk with other p-adic series and provide

C++ code to compute values of sk

6.2 A variation of the previous series

Once we have discussed the series
∑∞

n=0 n
kn! we wondered what happened if we

analyzed the series
∞∑
n=0

nk(n+ 1)!.

We found a recursive method to compute the sums of these series based on α and
on the values obtained in the previous section (the values of sk). For this method
to work we first need to compute

∑∞
n=0 n

kn! before computing
∑∞

n=0 n
k(n+ 1)!. We

start by showing an example:

∞∑
n=0

n2(n+ 1)! =
∞∑
n=1

(n− 1)2n! (13)

and we also have that

∞∑
n=1

(n− 1)2n! =
∞∑
n=1

(n2 − 2n+ 1)n! =
∞∑
n=1

n2n!− 2
∞∑
n=1

nn! +
∞∑
n=1

n!. (14)

Substituting with the values obtained in the previous section we find that

∞∑
n=1

n2n!− 2
∞∑
n=1

nn! +
∞∑
n=1

n! = −α + 2 + α = 2. (15)

The following output of our C++ code illustrates the meaning of the convergence
of
∑∞

n=0 n
2(n + 1)! to 2 in Z5. Note that the digit 2 is always at the end of the

expression. Before the 2 there is an increasing number of zeroes, which means that
the series converges to 2.
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Figure 7: Convergence of the series
∑
n2(n+ 1)! to 2 in Z5.

Using this trick and this method of recursion we can compute the following values
of
∑∞

n=0 n
k(n+ 1)! until k = 5:

∞∑
n=1

n3(n+ 1)! = 3α− 1 (16)

∞∑
n=1

n4(n+ 1)! = −7α− 7 (17)

∞∑
n=1

n5(n+ 1)! = 26. (18)

We observe that, in this case,
∑∞

n=0 n
k(n + 1)! converges to an integer (which

means that the coefficient of α is 0) for k = 2 and k = 5, regardless of the prime p
with respect to which the convergence is taken. The question is: Will

∑∞
n=1 n

k(n+1)!
converge to an integer for any other value of k? Again we have computed the
coefficients of α until very large k and we conjecture that the answer is no. Table 4
provides the first 15 values of the coefficients of α.
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Table 4: Coefficients of α in the sum of
∑∞

n=1 n
k(n+ 1)! until k = 15.

Similarly as in Table 3, the coefficients of α bounce between positive and negative
values, yet the absolute value seems to be increasing. Therefore we conjecture the
following:

Conjecture 6.6. The series
∑∞

n=1 n
k(n+1)! only converges to an integer for k = 2

and k = 5.

We have not found this conjecture in any of the papers related to this topic.

6.3 Generalizing further

In Section 6.1 we studied the series
∑∞

n=1 n
kn!, and in Section 6.2 we considered

the series
∑∞

n=1 n
k(n+ 1)!. Now we analyze a broader generalization of those series,

namely
∞∑
n=1

nk(n+m)!

We ask again: when does this series converge to an integer in Zp? We have computed
using our C++ program all the combinations of very large numbers of k and m and
have encountered that

∑∞
n=1 n

k(n + m)! only converges to an integer when k = 1
and m = 0; k = 2 and m = 1; k = 5 and m = 1. Therefore we conjecture the
following, which is the main conjecture of this work:

Conjecture 6.7. The series
∑∞

n=1 n
k(n + m)! only converges to an integer when

k = 1 and m = 0; k = 2 and m = 1; k = 5 and m = 1.

As with Conjecture 6.6, we have not found Conjecture 6.7 in any article. If
we analyze how to compute the sum of

∑∞
n=1 n

k(n + m)! when k is fixed, we can
prove some results. We provide the following recursive method that also uses the
coefficients of α described in Section 6.1 (the values of sk). We start with k = 1:

∞∑
n=1

n(n+m)! =
∞∑
n=1

nn!−m
∞∑
n=1

n! (19)
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If we only take into account the coefficient of α we have that

∞∑
n=1

nn!−m
∞∑
n=1

n! = −mα. (20)

It is clear that −m is zero only if m = 0. We already knew that
∑∞

n=1 nn!
converges to an integer (see Claim 6.1). Now we repeat the process for k = 2:

∞∑
n=1

n2(n+m)! + t =
∞∑
n=1

(n−m)2n! + t =
∞∑
n=1

(n2 − 2nm+m2)n! + t

=
∞∑
n=1

n2n!− 2m
∞∑
n=1

nn! +m2

∞∑
n=1

n! + t. (21)

Then, substituting for the values of sk and ignoring the independent value t
found in Section 6.1 because is not related to the coefficient of α, we obtain the
following:

∞∑
n=1

n2n!− 2m
∞∑
n=1

nn! +m2

∞∑
n=1

n! = −α +m2α = (−1 +m2)α. (22)

It is clear that (−1 + m2) is 0 only when m = 1. As it is observed, this process
is recursive and can be employed for any k and m. However, we have to clarify two
steps:

1. When we go from
∑∞

n=1 n
k(n + m)! to

∑∞
n=1(n −m)kn! in the first step, the

subindex of the second series should not be n = 1 but rather n = k. However,
this does not affect the final coefficient of α, because to bring back the n = 1
in the subindex we would have to add some independent terms, which have
nothing to do with the coefficients of α.

2. When we put the values of sk in the sum we ignore the independent terms
explained in Section 6.1, or t as written in (19). This is because we are only
interested in seeing when the coefficient of α is 0, and thus we only take into
account the coefficient of α and ignore the independent values.

As it is observed in the previous two examples, for each series we obtain that
the coefficient of α is a polynomial that depends on m. Because when we evaluate a
polynomial with any of its roots the result is zero, the coefficient of α equals zero if
and only if the polynomial that depends on m has some positive integer root. Here
we provide the polynomials that depend on m (which are the coefficients of α) for
k = 3, 4, 5, 6:

∞∑
n=1

n3(n+m)! = (1 + 3m−m3)α (23)
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∞∑
n=1

n4(n+m)! = (2− 4m− 6m2 +m4)α (24)

∞∑
n=1

n5(n+m)! = (−9− 10m+ 10m2 + 10m3 −m5)α (25)

∞∑
n=1

n6(n+m)! = (9 + 54m+ 30m2 − 20m3 − 15m4 +m6)α. (26)

If we analyze these polynomials, the only one which has one positive integer root
is when k = 5 with m = 2. This series is part of our conjecture (see Conjecture 6.3).
However, we can claim the following:

Proposition 6.8. The series
∑∞

n=1 n
k(n+m)! does not converge to an integer for

k = 3, 4, 6.

Proof. For the proof it suffices to see that the polynomials given by (22), (23) and
(24) have no positive integer roots.

When we checked in the literature if these series had been computed, we found
them in [31], where the same coefficients had been obtained. This seems to be the
only paper in which these polynomials are mentioned.

Nevertheless, it is not feasible to keep computing these polynomials to prove
Conjecture 6.7. Instead we need to find a general formula. Let Pk(m) denote the
polynomial that has been analyzed in this section that depends on m and corre-
sponds to the coefficient of α in the sum of the series

∑
nk(n + m)!. We analyze

what happens when we evaluate Pk(0) for each k. Clearly, we get rid of all the terms
except for the sk term in the beginning. Observe, in the previous examples, that
the only cas which there is no m in the coefficient is the one that corresponds to∑
nkn!. As defined in Section 6.1,

∑
nkn! = sk. Therefore we claim the following:

Claim 6.9. Pk(0) = sk.

Now we make another observation: what if we evaluate Pk(−1)? We obtained
the following results in our C++ code:

53



Figure 8: Result of Pk(−1) for the first values of k.

Amazingly, these numbers are exactly the same as the ones found in Section 6.1:

Claim 6.10. Pk+1(−1) = Pk(0) = sk.

We found that this property had been proven in [31].

7 Properties and cycles of Pk(−1) and Pk(1)

Because with Claim 6.10 we know the result of Pk(−1), we can now relate it to
Pk(1). Recall our conjecture stated in Section 6.1:

The series
∑∞

n=1 n
k(n+ 1)! only converges to an integer value for k = 2 and k = 5.

We again focus on (n + 1)! because these are the resulting series using Pk(m)
when m = 1. Observe the values of Pk(1) and Pk(−1) for k = 2, 3, 4 (recall that the
definition of sk is given in Section 6.1):

a2(1) = s2 − 2s1 + 1

a2(−1) = s2 + 2s1 + 1

a3(1) = s3 − 3s2 + 3s1 − 1

a3(−1) = s3 + 3s2 + 3s1 + 1

a4(1) = s4 − 4s3 + 6s2 − 4s1 + 1

a4(−1) = s4 + 4s3 + 6s2 + 4s1 + 1
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From these observations (note that the coefficients of sk are the binomial coef-
ficients), and from the fact that we are developing the polynomials (m − 1)k and
(m+1)k for Pk(1) and Pk(−1) respectively, we can derive the following two formulae:

Pk(1) =
k∑

n=0

(−1)k−n
(
k

n

)
sn (27)

Pk(−1) =
k∑

n=0

(
k

n

)
sn (28)

where u0 = 0. It is interesting to compute the difference between Pk(1) and Pk(−1).
We define the following:

Definition 7.1. We denote rk = Pk(−1)− Pk(1).

Defining these numbers rk is an idea that we have not found in any of the papers
related to this topic, and it has turned out to be very useful for the subsequent
proofs in this section. Therefore, using rk is one of the main contributions in this
part of our work.

The following equations show the results of Pk(−1)− Pk(1) for k = 2, 3, 4:

r2 = 2 ·
(

2

1

)
s1

r3 = 2 ·
(

3

1

)
s2 + 2

r4 = 2 ·
(

4

1

)
s3 + 2 ·

(
4

3

)
s1.

From these observations we can also find a formula for rk:

r2k+1 = 2
k∑
i=1

(
2k + 1

2i− 1

)
s2k−2i+2 + 2 (29)

r2k = 2
k∑
i=1

(
2k

2i− 1

)
s2k−2i+1. (30)

Therefore we claim the following:

Proposition 7.2. The number rk is even for all values of k.

Proof. Due to the fact that Pk(1) has alternate signs whereas Pk(−1) only has
positive signs, when we subtract Pk(1) from Pk(−1) we eliminate the terms sk whose
coefficient is

(
k
2γ

)
(and thus have negative sign in Pk(−1)), for any positive value

of γ < k. However, the other terms (the ones that are positive in both Pk(1) and
Pk(−1)) are added together and the result is therefore even. Because rk is then
formed with only even coefficients, rk is even.
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Corollary 7.3. Pk(1) and Pk(−1) have the same parity modulo 2.

Proof. The difference between Pk(1) and Pk(−1) is rk. If Pk(1) and Pk(−1) had a
different parity modulo 2, then the difference between them would be an odd number.
But this is a contradiction because, by Proposition 7.3, rk is always even.

Recall that we are interested in studying when is Pk(1) = 0. Observe the follow-
ing:

Observation 7.4. Pk(1) = 0 if and only if Pk(−1) = rk.

Proof. This is clear by the definition of rk.

We make the following remark: If Pk(−1) and rk are equal when Pk(1) = 0, then
they are also equal modulo any prime. Therefore we claim the following, which is
one of the main results of this work because we have not found it in any paper and
it partially solves Conjecture 6.2:

Theorem 7.5. If Pk(−1) ≡ 1 (mod 2), then
∑∞

n=0 n
k(n+ 1)! does not converge to

an integer.

Proof. As stated in Proposition 7.3, rk ≡ 0 (mod 2) for any value of k. Therefore,
if Pk(−1) ≡ 1 (mod 2) then the equality Pk(−1) = rk cannot occur. Thus, by
Observation 7.5, Pk(1) cannot be equal to 0. This means that because Pk(1) = x in
the sum of

∑∞
n=0 n

k(n+1)! = xα+y, the number x is not 0 and hence
∑∞

n=0 n
k(n+1)!

does not converge to an integer.

7.1 Cycles of Pk(1) and Pk(−1) modulo p

Because of Theorem 7.6 we want to analyze when is Pk(−1) ≡ 1 (mod 2). The
results and ideas found in this section are also new to this topic, because only in [21]
the values of Pk(−1) are evaluated modulo 2. In our work we find interesting results
when evaluating not only Pk(−1), but also Pk(1) and rk modulo n for different values
of n. Our motivation for computing Pk(−1) modulo 2 comes from Theorem 7.6. If
we represent Pk(−1) modulo 2 for some values of k we obtain the following plot:

Figure 9: Result of Pk(−1) modulo 2 for the first values of k.
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In fact, as can be seen in Figure 9, if we compute the remainders of Pk(−1) when
we divide the polynomial by 2 we observe a period of length 3 which consists of the
remainders 1, 1, 0. This is proven in [21]. All these results lead to our main result
in this part of our work:

Theorem 7.6. The series
∑∞

n=0 n
k(n + 1)! does not converge to an integer when

k ≡ 0 (mod 3) or k ≡ 1 (mod 3).

Proof. By Theorem 7.6, if Pk(−1) ≡ 1 (mod 2) then
∑∞

n=0 n
k(n + 1)! does not

converge to an integer. Using that sk = Pk(0) and that Pk(0) ≡ 1 (mod 2) when k ≡
0 (mod 3) or k ≡ 1 (mod 3), since Pk+1(−1) = Pk(0) Theorem 7.6 is proven.

It is then natural to ask the following question: what if we evaluate Pk(1),
Pk(−1) and rk modulo other numbers? We did not observe any other patterns in
any of the three sequences. However, we did observe cycles in the three sequences
if we applied one little change: whenever we were evaluating Pk(1), Pk(−1) or rk
modulo n, if the resulting number was negative then we took the opposite of this
number modulo n. So for example, imagine that Pk(1) = −6 for some value of k.
Say that in our C++ program we are computing the results of Pk(1) modulo 8.
Then, because we are working modulo 8, we take the value of −6 to be 2, because
−6 ≡ 2 (mod 8). Therefore, our C++ program would return that Pk(1) = −6 is
congruent to 2 modulo 8. By analyzing the three sequences with our little variation
we obtained very interesting cycles:

Observation 7.7. The representation of Pk(−1), Pk(1) and rk modulo n for con-
secutive values of k is cyclic if and only if n is a power of 2, 3 or 6.

The following figures illustrate the representation of Pk(−1) modulo 3, 4 and 6 for
some consecutive values of k. The periodicity of the remainders is clearly observable.
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Figure 10: Result of Pk(−1) modulo 3, 4 and 6 (in this order) for k until 100.

The same results occur with Pk(1) and rk. The following figures illustrate the
representation of Pk(1) and rk modulo 3, 4 and 6 for some consecutive values of k.

Figure 11: Result of Pk(1) modulo 3, 4 and 6 (in this order) for k until 100.
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Figure 12: Result of rk modulo 3, 4 and 6 (in this order) for k until 100.

Although the patterns are different in these other examples, the cycles are also
very clear. On the other hand, if we try to find a cycle in any other prime, power of
prime, or any composite number in general, we do not spot any patterns. Figure 13
shows an example of Pk(−1) evaluated modulo 5.

Figure 13: Result of Pk(−1) modulo 5 for k until 100. No cycles are spotted.

We next study the relationship between the length of the different cycles. For
instance, the length of the cycle of Pk(−1) modulo 3 is 13, whereas the length of the
cycle is 39 modulo 3 and 117 modulo 27. Observe that 39 = 13 · 3 and 117 = 39 · 3.
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The same relationship occurs with the powers of 2. The length of the cycle of
Pk(−1) is 12 modulo 4; 24 modulo 8, 48 modulo 16 and 96 modulo 32. Observe
that 24 = 12 · 2, 48 = 24 · 2 and 96 = 48 · 2. This also happens for powers of 6.
Let Lpx denote the length of the cycle of any of the three sequences Pk(1), Pk(−1),
rk) modulo px. Then we observe that the lengths of the cycles of Pk(−1) are the
following:

L2x = 3 · 2x L3x = 13 · 3x−1 L6x = 39 · 4x−1

Moreover, the lengths of the cycles of Pk(1) are:

L2x = 3 · 2x L3x = 13 · 3x−1 L6x = 39 · 2x−1

Finally, the lengths of the cycles of rk are:

L2x = 3 · 2x−1 L3x = 13 · 3x−1 L6x = 13 · 6x−1

The following three tables summarize the length of the cycles modulo powers of
2, 3 and 6 for Pk(−1), Pk(1) and rk respectively. The powers of 2 are marked with
blue, the powers of 3 are marked with red and the powers of 6 are marked with
green.

Table 5: Relationship between the modulo and the length of the cycle for Pk(−1).

Table 6: Relationship between the modulo and the length of the cycle for Pk(1).

Table 7: Relationship between the modulo and the length of the cycle for rk.

Now we recall the conjecture stated in Section 6.1:

The series
∑∞

n=1 n
kn! only converges to an integer for k = 1.

Because, by Observation 6.1, Pk+1(−1) = Pk(0) = sk, this conjecture is equiva-
lent to the following:

Conjecture 7.8. The number Pk(−1) is 0 only for k = 2.
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Even though cycles only occur under the conditions stated in this section (using
the opposite modulo n whenever Pk(−1) is negative), this is not relevant whenever
Pk(−1) is zero modulo n. Therefore, with our variation of computing these con-
gruences, we obtain cycles if n is a power of 2, 3 or 6, which are very useful when
we consider the case in which Pk(−1) is zero modulo n. For the values of n such
that there exist these cycles we mark whenever Pk(−1) is zero modulo n. Our main
idea is the following: If Pk(−1) is not 0 modulo n for any value of n, then Pk(−1)
cannot be zero, which means that the series does not converge to an integer. So for
instance, in the cycle of length 12 generated by n = 4 there are two zeroes: in the
first place of the cycle and in the 10th place of the cycle. Because it is a cycle, it
means that Pk(−1) can be zero only if k ≡ 2 or k ≡ 11 modulo 12 (because we start
the cycle at k = 2).

We can improve these results by combining different cycles. Combining the cycles
for n = 3, 4, 27, 81 and using the Chinese Remainder Theorem [32] we obtain the
following:

Observation 7.9. Pk(−1) can be zero only if k ≡ 2 or k ≡ 1010 modulo 1404.

Because we use n = 3, 4, 27, 81, we combined the length of each cycle and com-
puted the least common multiple, which is 1404. We checked all zeroes of each
cycles until 1404 and found out that Pk(−1) is zero modulo 3, 4, 27 and 81 only
when k = 2 and k = 1010. Therefore, because this is cyclic, we can generalize this
result modulo 1404. Clearly, by combining even more cycles we could obtain better
results. However, we would never eliminate one zero: P1(−1) ≡ 0 modulo n for
any value of n, because

∑
nkn! converges to an integer when k = 1. The following

picture shows how we investigated the different cycles using their zeroes modulo
powers of 2 and powers of 3.
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Figure 14: Data collected and analyzed to obtain the results on the number of
zeroes in the combined cycles. In different colors we mark the zeroes.

8 Conclusions

In this part of the work we have investigated a recent topic in mathematics: p-adic
analysis. It has been a very challenging experience to learn a whole theory about a
new branch of mathematics. Our work focused on some uses of the factorial function,
mainly p-adic series in which the factorial function is involved.

After studying background of p-adic numbers, including Newton’s Method and
Hensel’s Lemma, the main goal of this work has been the conjectural p-adic irra-
tionality of

∑
n!. It is believed to be irrational for all primes p, but there is no

known proof. In this work we considered a p-adic analogue of the factorial function
inspired by Stirling’s formula and based on Legendre’s formula. One of our main
results is that the series whose general term is this p-adic analogue converges to an
irrational p-adic integer for all p. This result has been included into an article that
was posted in the arXiv database [3].
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We also considered the series
∑∞

n=0 n
k(n+m)! and one of our conjectures is that∑∞

n=0 n
k(n + m)! only converges to an integer for k = 1 and m = 0; k = 2 and

m = 1; k = 5 and m = 1. We provided a recursive method to compute the sum
of these series in terms of polynomials Pk(m). Moreover, we described a recursive
formula for computing Pk(−1), Pk(1) and rk = Pk(−1) − Pk(1). Using arguments
from modular arithmetic, another relevant result is that the series

∑∞
n=0 n

k(n+ 1)!
does not converge to an integer if k ≡ 0 (mod 3) or k ≡ 1 (mod 3).

Although we consider that we have obtained significant results about p-adic
series containing factorials, we have encountered conjectures that still need to be
proven. We believe that the sequence rk introduced in the last section of this work
can lead to stronger results because of our observation that Pk(−1) and Pk(1) are
cyclic modulo n when n is a power of 2, 3 or 6. Further results might be obtained
by inspecting for which values of m we have that Pk(m) is cyclic modulo n for a
fixed value of n.

Most of our conclusions and proofs were obtained after running C++ programs
that we wrote for this purpose. Outputs of those programs provided large amounts
of numerical evidence supporting the conjectures that we formulated and guiding
our way to the new results contained in this work.

9 Appendix

9.1 Code

In this section we provide the code of the programs used for this work. For all the
programs in this section we include the code and an example of the output.

Newton’s Method
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Hensel’s Lemma
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p-Adic inverses
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We can use our program to find the p-adic expansion described in Section 2.5.

Convergence of
∑

n!
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p-Adic approximation of
∑

n!: Legendre’s formula

This code computes the number of ending zeroes of n! using Legendre’s formula for

a given base. Then it computes the convergence of the series
∑
p

n−Sp(n)

p−1 in Zp.
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Values of sk

This code computes the coefficient of α in the sum of the series
∑
nkn! (the value

of sk) and the coefficient of α in the sum of the series
∑
nk(n+ 1)! for each k.
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Sum of the series
∑

nk(n + m)!

This code computes the coefficient of α for the sum of the series
∑
nk(n + m)!,

for all possible combinations of k and m. This is the main program of the whole
work, because it computes the generalization of the series that helped come up with
Conjecture 6.2.
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9.2 Webpage

We also include screenshots of the webpage we created with all the concepts and
C++ programs that are found in this work. The webpage is called Number Theory
and Group Theory. The URL is

https://numbertheoryandgrouptheory.yolasite.com/
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